Metamath Proof Explorer


Theorem swapfelvv

Description: A swap functor is an ordered pair. (Contributed by Zhi Wang, 7-Oct-2025)

Ref Expression
Hypotheses swapfval.c φ C U
swapfval.d φ D V
Assertion swapfelvv Could not format assertion : No typesetting found for |- ( ph -> ( C swapF D ) e. ( _V X. _V ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 swapfval.c φ C U
2 swapfval.d φ D V
3 eqid C × c D = C × c D
4 eqid Base C × c D = Base C × c D
5 eqidd φ Hom C × c D = Hom C × c D
6 1 2 3 4 5 swapfval Could not format ( ph -> ( C swapF D ) = <. ( x e. ( Base ` ( C Xc. D ) ) |-> U. `' { x } ) , ( u e. ( Base ` ( C Xc. D ) ) , v e. ( Base ` ( C Xc. D ) ) |-> ( f e. ( u ( Hom ` ( C Xc. D ) ) v ) |-> U. `' { f } ) ) >. ) : No typesetting found for |- ( ph -> ( C swapF D ) = <. ( x e. ( Base ` ( C Xc. D ) ) |-> U. `' { x } ) , ( u e. ( Base ` ( C Xc. D ) ) , v e. ( Base ` ( C Xc. D ) ) |-> ( f e. ( u ( Hom ` ( C Xc. D ) ) v ) |-> U. `' { f } ) ) >. ) with typecode |-
7 fvex Base C × c D V
8 7 mptex x Base C × c D x -1 V
9 7 7 mpoex u Base C × c D , v Base C × c D f u Hom C × c D v f -1 V
10 8 9 opelvv x Base C × c D x -1 u Base C × c D , v Base C × c D f u Hom C × c D v f -1 V × V
11 6 10 eqeltrdi Could not format ( ph -> ( C swapF D ) e. ( _V X. _V ) ) : No typesetting found for |- ( ph -> ( C swapF D ) e. ( _V X. _V ) ) with typecode |-