Metamath Proof Explorer


Theorem swapf2fvala

Description: The morphism part of the swap functor. See also swapf2fval . (Contributed by Zhi Wang, 7-Oct-2025)

Ref Expression
Hypotheses swapfval.c φ C U
swapfval.d φ D V
swapf2fvala.s S = C × c D
swapf2fvala.b B = Base S
swapf2fvala.h φ H = Hom S
Assertion swapf2fvala Could not format assertion : No typesetting found for |- ( ph -> ( 2nd ` ( C swapF D ) ) = ( u e. B , v e. B |-> ( f e. ( u H v ) |-> U. `' { f } ) ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 swapfval.c φ C U
2 swapfval.d φ D V
3 swapf2fvala.s S = C × c D
4 swapf2fvala.b B = Base S
5 swapf2fvala.h φ H = Hom S
6 1 2 3 4 5 swapfval Could not format ( ph -> ( C swapF D ) = <. ( x e. B |-> U. `' { x } ) , ( u e. B , v e. B |-> ( f e. ( u H v ) |-> U. `' { f } ) ) >. ) : No typesetting found for |- ( ph -> ( C swapF D ) = <. ( x e. B |-> U. `' { x } ) , ( u e. B , v e. B |-> ( f e. ( u H v ) |-> U. `' { f } ) ) >. ) with typecode |-
7 6 fveq2d Could not format ( ph -> ( 2nd ` ( C swapF D ) ) = ( 2nd ` <. ( x e. B |-> U. `' { x } ) , ( u e. B , v e. B |-> ( f e. ( u H v ) |-> U. `' { f } ) ) >. ) ) : No typesetting found for |- ( ph -> ( 2nd ` ( C swapF D ) ) = ( 2nd ` <. ( x e. B |-> U. `' { x } ) , ( u e. B , v e. B |-> ( f e. ( u H v ) |-> U. `' { f } ) ) >. ) ) with typecode |-
8 4 fvexi B V
9 8 mptex x B x -1 V
10 8 8 mpoex u B , v B f u H v f -1 V
11 9 10 op2nd 2 nd x B x -1 u B , v B f u H v f -1 = u B , v B f u H v f -1
12 7 11 eqtrdi Could not format ( ph -> ( 2nd ` ( C swapF D ) ) = ( u e. B , v e. B |-> ( f e. ( u H v ) |-> U. `' { f } ) ) ) : No typesetting found for |- ( ph -> ( 2nd ` ( C swapF D ) ) = ( u e. B , v e. B |-> ( f e. ( u H v ) |-> U. `' { f } ) ) ) with typecode |-