Metamath Proof Explorer


Theorem swapf2fvala

Description: The morphism part of the swap functor. See also swapf2fval . (Contributed by Zhi Wang, 7-Oct-2025)

Ref Expression
Hypotheses swapfval.c
|- ( ph -> C e. U )
swapfval.d
|- ( ph -> D e. V )
swapf2fvala.s
|- S = ( C Xc. D )
swapf2fvala.b
|- B = ( Base ` S )
swapf2fvala.h
|- ( ph -> H = ( Hom ` S ) )
Assertion swapf2fvala
|- ( ph -> ( 2nd ` ( C swapF D ) ) = ( u e. B , v e. B |-> ( f e. ( u H v ) |-> U. `' { f } ) ) )

Proof

Step Hyp Ref Expression
1 swapfval.c
 |-  ( ph -> C e. U )
2 swapfval.d
 |-  ( ph -> D e. V )
3 swapf2fvala.s
 |-  S = ( C Xc. D )
4 swapf2fvala.b
 |-  B = ( Base ` S )
5 swapf2fvala.h
 |-  ( ph -> H = ( Hom ` S ) )
6 1 2 3 4 5 swapfval
 |-  ( ph -> ( C swapF D ) = <. ( x e. B |-> U. `' { x } ) , ( u e. B , v e. B |-> ( f e. ( u H v ) |-> U. `' { f } ) ) >. )
7 6 fveq2d
 |-  ( ph -> ( 2nd ` ( C swapF D ) ) = ( 2nd ` <. ( x e. B |-> U. `' { x } ) , ( u e. B , v e. B |-> ( f e. ( u H v ) |-> U. `' { f } ) ) >. ) )
8 4 fvexi
 |-  B e. _V
9 8 mptex
 |-  ( x e. B |-> U. `' { x } ) e. _V
10 8 8 mpoex
 |-  ( u e. B , v e. B |-> ( f e. ( u H v ) |-> U. `' { f } ) ) e. _V
11 9 10 op2nd
 |-  ( 2nd ` <. ( x e. B |-> U. `' { x } ) , ( u e. B , v e. B |-> ( f e. ( u H v ) |-> U. `' { f } ) ) >. ) = ( u e. B , v e. B |-> ( f e. ( u H v ) |-> U. `' { f } ) )
12 7 11 eqtrdi
 |-  ( ph -> ( 2nd ` ( C swapF D ) ) = ( u e. B , v e. B |-> ( f e. ( u H v ) |-> U. `' { f } ) ) )