| Step |
Hyp |
Ref |
Expression |
| 1 |
|
swapfval.c |
|- ( ph -> C e. U ) |
| 2 |
|
swapfval.d |
|- ( ph -> D e. V ) |
| 3 |
|
swapf2fvala.s |
|- S = ( C Xc. D ) |
| 4 |
|
swapf2fvala.b |
|- B = ( Base ` S ) |
| 5 |
|
swapf2fvala.h |
|- ( ph -> H = ( Hom ` S ) ) |
| 6 |
|
swapf2fval.o |
|- ( ph -> ( C swapF D ) = <. O , P >. ) |
| 7 |
6
|
fveq2d |
|- ( ph -> ( 2nd ` ( C swapF D ) ) = ( 2nd ` <. O , P >. ) ) |
| 8 |
1 2 3 4 5
|
swapf2fvala |
|- ( ph -> ( 2nd ` ( C swapF D ) ) = ( u e. B , v e. B |-> ( f e. ( u H v ) |-> U. `' { f } ) ) ) |
| 9 |
1 2
|
swapfelvv |
|- ( ph -> ( C swapF D ) e. ( _V X. _V ) ) |
| 10 |
6 9
|
eqeltrrd |
|- ( ph -> <. O , P >. e. ( _V X. _V ) ) |
| 11 |
|
opelxp |
|- ( <. O , P >. e. ( _V X. _V ) <-> ( O e. _V /\ P e. _V ) ) |
| 12 |
11
|
biimpi |
|- ( <. O , P >. e. ( _V X. _V ) -> ( O e. _V /\ P e. _V ) ) |
| 13 |
|
op2ndg |
|- ( ( O e. _V /\ P e. _V ) -> ( 2nd ` <. O , P >. ) = P ) |
| 14 |
10 12 13
|
3syl |
|- ( ph -> ( 2nd ` <. O , P >. ) = P ) |
| 15 |
7 8 14
|
3eqtr3rd |
|- ( ph -> P = ( u e. B , v e. B |-> ( f e. ( u H v ) |-> U. `' { f } ) ) ) |