Metamath Proof Explorer


Theorem swapf2fval

Description: The morphism part of the swap functor. See also swapf2fvala . (Contributed by Zhi Wang, 7-Oct-2025)

Ref Expression
Hypotheses swapfval.c
|- ( ph -> C e. U )
swapfval.d
|- ( ph -> D e. V )
swapf2fvala.s
|- S = ( C Xc. D )
swapf2fvala.b
|- B = ( Base ` S )
swapf2fvala.h
|- ( ph -> H = ( Hom ` S ) )
swapf2fval.o
|- ( ph -> ( C swapF D ) = <. O , P >. )
Assertion swapf2fval
|- ( ph -> P = ( u e. B , v e. B |-> ( f e. ( u H v ) |-> U. `' { f } ) ) )

Proof

Step Hyp Ref Expression
1 swapfval.c
 |-  ( ph -> C e. U )
2 swapfval.d
 |-  ( ph -> D e. V )
3 swapf2fvala.s
 |-  S = ( C Xc. D )
4 swapf2fvala.b
 |-  B = ( Base ` S )
5 swapf2fvala.h
 |-  ( ph -> H = ( Hom ` S ) )
6 swapf2fval.o
 |-  ( ph -> ( C swapF D ) = <. O , P >. )
7 6 fveq2d
 |-  ( ph -> ( 2nd ` ( C swapF D ) ) = ( 2nd ` <. O , P >. ) )
8 1 2 3 4 5 swapf2fvala
 |-  ( ph -> ( 2nd ` ( C swapF D ) ) = ( u e. B , v e. B |-> ( f e. ( u H v ) |-> U. `' { f } ) ) )
9 1 2 swapfelvv
 |-  ( ph -> ( C swapF D ) e. ( _V X. _V ) )
10 6 9 eqeltrrd
 |-  ( ph -> <. O , P >. e. ( _V X. _V ) )
11 opelxp
 |-  ( <. O , P >. e. ( _V X. _V ) <-> ( O e. _V /\ P e. _V ) )
12 11 biimpi
 |-  ( <. O , P >. e. ( _V X. _V ) -> ( O e. _V /\ P e. _V ) )
13 op2ndg
 |-  ( ( O e. _V /\ P e. _V ) -> ( 2nd ` <. O , P >. ) = P )
14 10 12 13 3syl
 |-  ( ph -> ( 2nd ` <. O , P >. ) = P )
15 7 8 14 3eqtr3rd
 |-  ( ph -> P = ( u e. B , v e. B |-> ( f e. ( u H v ) |-> U. `' { f } ) ) )