Metamath Proof Explorer


Theorem swapf2fval

Description: The morphism part of the swap functor. See also swapf2fvala . (Contributed by Zhi Wang, 7-Oct-2025)

Ref Expression
Hypotheses swapfval.c φ C U
swapfval.d φ D V
swapf2fvala.s S = C × c D
swapf2fvala.b B = Base S
swapf2fvala.h φ H = Hom S
swapf2fval.o No typesetting found for |- ( ph -> ( C swapF D ) = <. O , P >. ) with typecode |-
Assertion swapf2fval φ P = u B , v B f u H v f -1

Proof

Step Hyp Ref Expression
1 swapfval.c φ C U
2 swapfval.d φ D V
3 swapf2fvala.s S = C × c D
4 swapf2fvala.b B = Base S
5 swapf2fvala.h φ H = Hom S
6 swapf2fval.o Could not format ( ph -> ( C swapF D ) = <. O , P >. ) : No typesetting found for |- ( ph -> ( C swapF D ) = <. O , P >. ) with typecode |-
7 6 fveq2d Could not format ( ph -> ( 2nd ` ( C swapF D ) ) = ( 2nd ` <. O , P >. ) ) : No typesetting found for |- ( ph -> ( 2nd ` ( C swapF D ) ) = ( 2nd ` <. O , P >. ) ) with typecode |-
8 1 2 3 4 5 swapf2fvala Could not format ( ph -> ( 2nd ` ( C swapF D ) ) = ( u e. B , v e. B |-> ( f e. ( u H v ) |-> U. `' { f } ) ) ) : No typesetting found for |- ( ph -> ( 2nd ` ( C swapF D ) ) = ( u e. B , v e. B |-> ( f e. ( u H v ) |-> U. `' { f } ) ) ) with typecode |-
9 1 2 swapfelvv Could not format ( ph -> ( C swapF D ) e. ( _V X. _V ) ) : No typesetting found for |- ( ph -> ( C swapF D ) e. ( _V X. _V ) ) with typecode |-
10 6 9 eqeltrrd φ O P V × V
11 opelxp O P V × V O V P V
12 11 biimpi O P V × V O V P V
13 op2ndg O V P V 2 nd O P = P
14 10 12 13 3syl φ 2 nd O P = P
15 7 8 14 3eqtr3rd φ P = u B , v B f u H v f -1