Description: Define the swap functor from ( C Xc. D ) to ( D Xc. C ) by swapping all objects ( swapf1 ) and morphisms ( swapf2 ) .
Such functor is called a "swap functor" in https://arxiv.org/pdf/2302.07810 or a "twist functor" in https://arxiv.org/pdf/2508.01886 , the latter of which finds its counterpart as "twisting map" in https://arxiv.org/pdf/2411.04102 for tensor product of algebras. The "swap functor" or "twisting map" is often denoted as a small tau ta in literature. However, the term "twist functor" is defined differently in https://arxiv.org/pdf/1208.4046 and thus not adopted here.
tpos _I depends on more mathbox theorems, and thus are not adopted here. See dfswapf2 for an alternate definition.
(Contributed by Zhi Wang, 7-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-swapf | ⊢ swapF = ( 𝑐 ∈ V , 𝑑 ∈ V ↦ ⦋ ( 𝑐 ×c 𝑑 ) / 𝑠 ⦌ ⦋ ( Base ‘ 𝑠 ) / 𝑏 ⦌ ⦋ ( Hom ‘ 𝑠 ) / ℎ ⦌ 〈 ( 𝑥 ∈ 𝑏 ↦ ∪ ◡ { 𝑥 } ) , ( 𝑢 ∈ 𝑏 , 𝑣 ∈ 𝑏 ↦ ( 𝑓 ∈ ( 𝑢 ℎ 𝑣 ) ↦ ∪ ◡ { 𝑓 } ) ) 〉 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cswapf | ⊢ swapF | |
| 1 | vc | ⊢ 𝑐 | |
| 2 | cvv | ⊢ V | |
| 3 | vd | ⊢ 𝑑 | |
| 4 | 1 | cv | ⊢ 𝑐 |
| 5 | cxpc | ⊢ ×c | |
| 6 | 3 | cv | ⊢ 𝑑 |
| 7 | 4 6 5 | co | ⊢ ( 𝑐 ×c 𝑑 ) |
| 8 | vs | ⊢ 𝑠 | |
| 9 | cbs | ⊢ Base | |
| 10 | 8 | cv | ⊢ 𝑠 |
| 11 | 10 9 | cfv | ⊢ ( Base ‘ 𝑠 ) |
| 12 | vb | ⊢ 𝑏 | |
| 13 | chom | ⊢ Hom | |
| 14 | 10 13 | cfv | ⊢ ( Hom ‘ 𝑠 ) |
| 15 | vh | ⊢ ℎ | |
| 16 | vx | ⊢ 𝑥 | |
| 17 | 12 | cv | ⊢ 𝑏 |
| 18 | 16 | cv | ⊢ 𝑥 |
| 19 | 18 | csn | ⊢ { 𝑥 } |
| 20 | 19 | ccnv | ⊢ ◡ { 𝑥 } |
| 21 | 20 | cuni | ⊢ ∪ ◡ { 𝑥 } |
| 22 | 16 17 21 | cmpt | ⊢ ( 𝑥 ∈ 𝑏 ↦ ∪ ◡ { 𝑥 } ) |
| 23 | vu | ⊢ 𝑢 | |
| 24 | vv | ⊢ 𝑣 | |
| 25 | vf | ⊢ 𝑓 | |
| 26 | 23 | cv | ⊢ 𝑢 |
| 27 | 15 | cv | ⊢ ℎ |
| 28 | 24 | cv | ⊢ 𝑣 |
| 29 | 26 28 27 | co | ⊢ ( 𝑢 ℎ 𝑣 ) |
| 30 | 25 | cv | ⊢ 𝑓 |
| 31 | 30 | csn | ⊢ { 𝑓 } |
| 32 | 31 | ccnv | ⊢ ◡ { 𝑓 } |
| 33 | 32 | cuni | ⊢ ∪ ◡ { 𝑓 } |
| 34 | 25 29 33 | cmpt | ⊢ ( 𝑓 ∈ ( 𝑢 ℎ 𝑣 ) ↦ ∪ ◡ { 𝑓 } ) |
| 35 | 23 24 17 17 34 | cmpo | ⊢ ( 𝑢 ∈ 𝑏 , 𝑣 ∈ 𝑏 ↦ ( 𝑓 ∈ ( 𝑢 ℎ 𝑣 ) ↦ ∪ ◡ { 𝑓 } ) ) |
| 36 | 22 35 | cop | ⊢ 〈 ( 𝑥 ∈ 𝑏 ↦ ∪ ◡ { 𝑥 } ) , ( 𝑢 ∈ 𝑏 , 𝑣 ∈ 𝑏 ↦ ( 𝑓 ∈ ( 𝑢 ℎ 𝑣 ) ↦ ∪ ◡ { 𝑓 } ) ) 〉 |
| 37 | 15 14 36 | csb | ⊢ ⦋ ( Hom ‘ 𝑠 ) / ℎ ⦌ 〈 ( 𝑥 ∈ 𝑏 ↦ ∪ ◡ { 𝑥 } ) , ( 𝑢 ∈ 𝑏 , 𝑣 ∈ 𝑏 ↦ ( 𝑓 ∈ ( 𝑢 ℎ 𝑣 ) ↦ ∪ ◡ { 𝑓 } ) ) 〉 |
| 38 | 12 11 37 | csb | ⊢ ⦋ ( Base ‘ 𝑠 ) / 𝑏 ⦌ ⦋ ( Hom ‘ 𝑠 ) / ℎ ⦌ 〈 ( 𝑥 ∈ 𝑏 ↦ ∪ ◡ { 𝑥 } ) , ( 𝑢 ∈ 𝑏 , 𝑣 ∈ 𝑏 ↦ ( 𝑓 ∈ ( 𝑢 ℎ 𝑣 ) ↦ ∪ ◡ { 𝑓 } ) ) 〉 |
| 39 | 8 7 38 | csb | ⊢ ⦋ ( 𝑐 ×c 𝑑 ) / 𝑠 ⦌ ⦋ ( Base ‘ 𝑠 ) / 𝑏 ⦌ ⦋ ( Hom ‘ 𝑠 ) / ℎ ⦌ 〈 ( 𝑥 ∈ 𝑏 ↦ ∪ ◡ { 𝑥 } ) , ( 𝑢 ∈ 𝑏 , 𝑣 ∈ 𝑏 ↦ ( 𝑓 ∈ ( 𝑢 ℎ 𝑣 ) ↦ ∪ ◡ { 𝑓 } ) ) 〉 |
| 40 | 1 3 2 2 39 | cmpo | ⊢ ( 𝑐 ∈ V , 𝑑 ∈ V ↦ ⦋ ( 𝑐 ×c 𝑑 ) / 𝑠 ⦌ ⦋ ( Base ‘ 𝑠 ) / 𝑏 ⦌ ⦋ ( Hom ‘ 𝑠 ) / ℎ ⦌ 〈 ( 𝑥 ∈ 𝑏 ↦ ∪ ◡ { 𝑥 } ) , ( 𝑢 ∈ 𝑏 , 𝑣 ∈ 𝑏 ↦ ( 𝑓 ∈ ( 𝑢 ℎ 𝑣 ) ↦ ∪ ◡ { 𝑓 } ) ) 〉 ) |
| 41 | 0 40 | wceq | ⊢ swapF = ( 𝑐 ∈ V , 𝑑 ∈ V ↦ ⦋ ( 𝑐 ×c 𝑑 ) / 𝑠 ⦌ ⦋ ( Base ‘ 𝑠 ) / 𝑏 ⦌ ⦋ ( Hom ‘ 𝑠 ) / ℎ ⦌ 〈 ( 𝑥 ∈ 𝑏 ↦ ∪ ◡ { 𝑥 } ) , ( 𝑢 ∈ 𝑏 , 𝑣 ∈ 𝑏 ↦ ( 𝑓 ∈ ( 𝑢 ℎ 𝑣 ) ↦ ∪ ◡ { 𝑓 } ) ) 〉 ) |