Metamath Proof Explorer


Definition df-swapf

Description: Define the swap functor from ( C Xc. D ) to ( D Xc. C ) by swapping all objects ( swapf1 ) and morphisms ( swapf2 ) .

Such functor is called a "swap functor" in https://arxiv.org/pdf/2302.07810 or a "twist functor" in https://arxiv.org/pdf/2508.01886 , the latter of which finds its counterpart as "twisting map" in https://arxiv.org/pdf/2411.04102 for tensor product of algebras. The "swap functor" or "twisting map" is often denoted as a small tau ta in literature. However, the term "twist functor" is defined differently in https://arxiv.org/pdf/1208.4046 and thus not adopted here.

tpos _I depends on more mathbox theorems, and thus are not adopted here. See dfswapf2 for an alternate definition.

(Contributed by Zhi Wang, 7-Oct-2025)

Ref Expression
Assertion df-swapf swapF = ( 𝑐 ∈ V , 𝑑 ∈ V ↦ ( 𝑐 ×c 𝑑 ) / 𝑠 ( Base ‘ 𝑠 ) / 𝑏 ( Hom ‘ 𝑠 ) / ⟨ ( 𝑥𝑏 { 𝑥 } ) , ( 𝑢𝑏 , 𝑣𝑏 ↦ ( 𝑓 ∈ ( 𝑢 𝑣 ) ↦ { 𝑓 } ) ) ⟩ )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cswapf swapF
1 vc 𝑐
2 cvv V
3 vd 𝑑
4 1 cv 𝑐
5 cxpc ×c
6 3 cv 𝑑
7 4 6 5 co ( 𝑐 ×c 𝑑 )
8 vs 𝑠
9 cbs Base
10 8 cv 𝑠
11 10 9 cfv ( Base ‘ 𝑠 )
12 vb 𝑏
13 chom Hom
14 10 13 cfv ( Hom ‘ 𝑠 )
15 vh
16 vx 𝑥
17 12 cv 𝑏
18 16 cv 𝑥
19 18 csn { 𝑥 }
20 19 ccnv { 𝑥 }
21 20 cuni { 𝑥 }
22 16 17 21 cmpt ( 𝑥𝑏 { 𝑥 } )
23 vu 𝑢
24 vv 𝑣
25 vf 𝑓
26 23 cv 𝑢
27 15 cv
28 24 cv 𝑣
29 26 28 27 co ( 𝑢 𝑣 )
30 25 cv 𝑓
31 30 csn { 𝑓 }
32 31 ccnv { 𝑓 }
33 32 cuni { 𝑓 }
34 25 29 33 cmpt ( 𝑓 ∈ ( 𝑢 𝑣 ) ↦ { 𝑓 } )
35 23 24 17 17 34 cmpo ( 𝑢𝑏 , 𝑣𝑏 ↦ ( 𝑓 ∈ ( 𝑢 𝑣 ) ↦ { 𝑓 } ) )
36 22 35 cop ⟨ ( 𝑥𝑏 { 𝑥 } ) , ( 𝑢𝑏 , 𝑣𝑏 ↦ ( 𝑓 ∈ ( 𝑢 𝑣 ) ↦ { 𝑓 } ) ) ⟩
37 15 14 36 csb ( Hom ‘ 𝑠 ) / ⟨ ( 𝑥𝑏 { 𝑥 } ) , ( 𝑢𝑏 , 𝑣𝑏 ↦ ( 𝑓 ∈ ( 𝑢 𝑣 ) ↦ { 𝑓 } ) ) ⟩
38 12 11 37 csb ( Base ‘ 𝑠 ) / 𝑏 ( Hom ‘ 𝑠 ) / ⟨ ( 𝑥𝑏 { 𝑥 } ) , ( 𝑢𝑏 , 𝑣𝑏 ↦ ( 𝑓 ∈ ( 𝑢 𝑣 ) ↦ { 𝑓 } ) ) ⟩
39 8 7 38 csb ( 𝑐 ×c 𝑑 ) / 𝑠 ( Base ‘ 𝑠 ) / 𝑏 ( Hom ‘ 𝑠 ) / ⟨ ( 𝑥𝑏 { 𝑥 } ) , ( 𝑢𝑏 , 𝑣𝑏 ↦ ( 𝑓 ∈ ( 𝑢 𝑣 ) ↦ { 𝑓 } ) ) ⟩
40 1 3 2 2 39 cmpo ( 𝑐 ∈ V , 𝑑 ∈ V ↦ ( 𝑐 ×c 𝑑 ) / 𝑠 ( Base ‘ 𝑠 ) / 𝑏 ( Hom ‘ 𝑠 ) / ⟨ ( 𝑥𝑏 { 𝑥 } ) , ( 𝑢𝑏 , 𝑣𝑏 ↦ ( 𝑓 ∈ ( 𝑢 𝑣 ) ↦ { 𝑓 } ) ) ⟩ )
41 0 40 wceq swapF = ( 𝑐 ∈ V , 𝑑 ∈ V ↦ ( 𝑐 ×c 𝑑 ) / 𝑠 ( Base ‘ 𝑠 ) / 𝑏 ( Hom ‘ 𝑠 ) / ⟨ ( 𝑥𝑏 { 𝑥 } ) , ( 𝑢𝑏 , 𝑣𝑏 ↦ ( 𝑓 ∈ ( 𝑢 𝑣 ) ↦ { 𝑓 } ) ) ⟩ )