Metamath Proof Explorer


Theorem swapf1

Description: The object part of the swap functor swaps the objects. (Contributed by Zhi Wang, 7-Oct-2025)

Ref Expression
Hypotheses swapf1.o ( 𝜑 → ( 𝐶 swapF 𝐷 ) = ⟨ 𝑂 , 𝑃 ⟩ )
swapf1.x ( 𝜑𝑋 ∈ ( Base ‘ 𝐶 ) )
swapf1.y ( 𝜑𝑌 ∈ ( Base ‘ 𝐷 ) )
Assertion swapf1 ( 𝜑 → ( 𝑋 𝑂 𝑌 ) = ⟨ 𝑌 , 𝑋 ⟩ )

Proof

Step Hyp Ref Expression
1 swapf1.o ( 𝜑 → ( 𝐶 swapF 𝐷 ) = ⟨ 𝑂 , 𝑃 ⟩ )
2 swapf1.x ( 𝜑𝑋 ∈ ( Base ‘ 𝐶 ) )
3 swapf1.y ( 𝜑𝑌 ∈ ( Base ‘ 𝐷 ) )
4 df-ov ( 𝑋 𝑂 𝑌 ) = ( 𝑂 ‘ ⟨ 𝑋 , 𝑌 ⟩ )
5 2 elfvexd ( 𝜑𝐶 ∈ V )
6 3 elfvexd ( 𝜑𝐷 ∈ V )
7 eqid ( 𝐶 ×c 𝐷 ) = ( 𝐶 ×c 𝐷 )
8 eqid ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 )
9 eqid ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 )
10 7 8 9 xpcbas ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) = ( Base ‘ ( 𝐶 ×c 𝐷 ) )
11 5 6 7 10 1 swapf1val ( 𝜑𝑂 = ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ↦ { 𝑥 } ) )
12 simpr ( ( 𝜑𝑥 = ⟨ 𝑋 , 𝑌 ⟩ ) → 𝑥 = ⟨ 𝑋 , 𝑌 ⟩ )
13 12 sneqd ( ( 𝜑𝑥 = ⟨ 𝑋 , 𝑌 ⟩ ) → { 𝑥 } = { ⟨ 𝑋 , 𝑌 ⟩ } )
14 13 cnveqd ( ( 𝜑𝑥 = ⟨ 𝑋 , 𝑌 ⟩ ) → { 𝑥 } = { ⟨ 𝑋 , 𝑌 ⟩ } )
15 14 unieqd ( ( 𝜑𝑥 = ⟨ 𝑋 , 𝑌 ⟩ ) → { 𝑥 } = { ⟨ 𝑋 , 𝑌 ⟩ } )
16 opswap { ⟨ 𝑋 , 𝑌 ⟩ } = ⟨ 𝑌 , 𝑋
17 15 16 eqtrdi ( ( 𝜑𝑥 = ⟨ 𝑋 , 𝑌 ⟩ ) → { 𝑥 } = ⟨ 𝑌 , 𝑋 ⟩ )
18 2 3 opelxpd ( 𝜑 → ⟨ 𝑋 , 𝑌 ⟩ ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) )
19 opex 𝑌 , 𝑋 ⟩ ∈ V
20 19 a1i ( 𝜑 → ⟨ 𝑌 , 𝑋 ⟩ ∈ V )
21 11 17 18 20 fvmptd ( 𝜑 → ( 𝑂 ‘ ⟨ 𝑋 , 𝑌 ⟩ ) = ⟨ 𝑌 , 𝑋 ⟩ )
22 4 21 eqtrid ( 𝜑 → ( 𝑋 𝑂 𝑌 ) = ⟨ 𝑌 , 𝑋 ⟩ )