| Step |
Hyp |
Ref |
Expression |
| 1 |
|
swapf1.o |
⊢ ( 𝜑 → ( 𝐶 swapF 𝐷 ) = 〈 𝑂 , 𝑃 〉 ) |
| 2 |
|
swapf1.x |
⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝐶 ) ) |
| 3 |
|
swapf1.y |
⊢ ( 𝜑 → 𝑌 ∈ ( Base ‘ 𝐷 ) ) |
| 4 |
|
swapf2.z |
⊢ ( 𝜑 → 𝑍 ∈ ( Base ‘ 𝐶 ) ) |
| 5 |
|
swapf2.w |
⊢ ( 𝜑 → 𝑊 ∈ ( Base ‘ 𝐷 ) ) |
| 6 |
|
swapf2val.s |
⊢ 𝑆 = ( 𝐶 ×c 𝐷 ) |
| 7 |
|
swapf2val.h |
⊢ ( 𝜑 → 𝐻 = ( Hom ‘ 𝑆 ) ) |
| 8 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
| 9 |
|
eqid |
⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) |
| 10 |
6 8 9
|
xpcbas |
⊢ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) = ( Base ‘ 𝑆 ) |
| 11 |
2 3
|
opelxpd |
⊢ ( 𝜑 → 〈 𝑋 , 𝑌 〉 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ) |
| 12 |
4 5
|
opelxpd |
⊢ ( 𝜑 → 〈 𝑍 , 𝑊 〉 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ) |
| 13 |
1 6 10 11 12 7
|
swapf2vala |
⊢ ( 𝜑 → ( 〈 𝑋 , 𝑌 〉 𝑃 〈 𝑍 , 𝑊 〉 ) = ( 𝑓 ∈ ( 〈 𝑋 , 𝑌 〉 𝐻 〈 𝑍 , 𝑊 〉 ) ↦ ∪ ◡ { 𝑓 } ) ) |