Metamath Proof Explorer


Theorem swapf2val

Description: The morphism part of the swap functor swaps the morphisms. (Contributed by Zhi Wang, 7-Oct-2025)

Ref Expression
Hypotheses swapf1.o ( 𝜑 → ( 𝐶 swapF 𝐷 ) = ⟨ 𝑂 , 𝑃 ⟩ )
swapf1.x ( 𝜑𝑋 ∈ ( Base ‘ 𝐶 ) )
swapf1.y ( 𝜑𝑌 ∈ ( Base ‘ 𝐷 ) )
swapf2.z ( 𝜑𝑍 ∈ ( Base ‘ 𝐶 ) )
swapf2.w ( 𝜑𝑊 ∈ ( Base ‘ 𝐷 ) )
swapf2val.s 𝑆 = ( 𝐶 ×c 𝐷 )
swapf2val.h ( 𝜑𝐻 = ( Hom ‘ 𝑆 ) )
Assertion swapf2val ( 𝜑 → ( ⟨ 𝑋 , 𝑌𝑃𝑍 , 𝑊 ⟩ ) = ( 𝑓 ∈ ( ⟨ 𝑋 , 𝑌𝐻𝑍 , 𝑊 ⟩ ) ↦ { 𝑓 } ) )

Proof

Step Hyp Ref Expression
1 swapf1.o ( 𝜑 → ( 𝐶 swapF 𝐷 ) = ⟨ 𝑂 , 𝑃 ⟩ )
2 swapf1.x ( 𝜑𝑋 ∈ ( Base ‘ 𝐶 ) )
3 swapf1.y ( 𝜑𝑌 ∈ ( Base ‘ 𝐷 ) )
4 swapf2.z ( 𝜑𝑍 ∈ ( Base ‘ 𝐶 ) )
5 swapf2.w ( 𝜑𝑊 ∈ ( Base ‘ 𝐷 ) )
6 swapf2val.s 𝑆 = ( 𝐶 ×c 𝐷 )
7 swapf2val.h ( 𝜑𝐻 = ( Hom ‘ 𝑆 ) )
8 eqid ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 )
9 eqid ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 )
10 6 8 9 xpcbas ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) = ( Base ‘ 𝑆 )
11 2 3 opelxpd ( 𝜑 → ⟨ 𝑋 , 𝑌 ⟩ ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) )
12 4 5 opelxpd ( 𝜑 → ⟨ 𝑍 , 𝑊 ⟩ ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) )
13 1 6 10 11 12 7 swapf2vala ( 𝜑 → ( ⟨ 𝑋 , 𝑌𝑃𝑍 , 𝑊 ⟩ ) = ( 𝑓 ∈ ( ⟨ 𝑋 , 𝑌𝐻𝑍 , 𝑊 ⟩ ) ↦ { 𝑓 } ) )