Metamath Proof Explorer


Theorem swapf2vala

Description: The morphism part of the swap functor swaps the morphisms. (Contributed by Zhi Wang, 7-Oct-2025)

Ref Expression
Hypotheses swapf1a.o ( 𝜑 → ( 𝐶 swapF 𝐷 ) = ⟨ 𝑂 , 𝑃 ⟩ )
swapf1a.s 𝑆 = ( 𝐶 ×c 𝐷 )
swapf1a.b 𝐵 = ( Base ‘ 𝑆 )
swapf1a.x ( 𝜑𝑋𝐵 )
swapf2a.y ( 𝜑𝑌𝐵 )
swapf2a.h ( 𝜑𝐻 = ( Hom ‘ 𝑆 ) )
Assertion swapf2vala ( 𝜑 → ( 𝑋 𝑃 𝑌 ) = ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ↦ { 𝑓 } ) )

Proof

Step Hyp Ref Expression
1 swapf1a.o ( 𝜑 → ( 𝐶 swapF 𝐷 ) = ⟨ 𝑂 , 𝑃 ⟩ )
2 swapf1a.s 𝑆 = ( 𝐶 ×c 𝐷 )
3 swapf1a.b 𝐵 = ( Base ‘ 𝑆 )
4 swapf1a.x ( 𝜑𝑋𝐵 )
5 swapf2a.y ( 𝜑𝑌𝐵 )
6 swapf2a.h ( 𝜑𝐻 = ( Hom ‘ 𝑆 ) )
7 2 3 4 elxpcbasex1 ( 𝜑𝐶 ∈ V )
8 2 3 4 elxpcbasex2 ( 𝜑𝐷 ∈ V )
9 7 8 2 3 6 1 swapf2fval ( 𝜑𝑃 = ( 𝑢𝐵 , 𝑣𝐵 ↦ ( 𝑓 ∈ ( 𝑢 𝐻 𝑣 ) ↦ { 𝑓 } ) ) )
10 simprl ( ( 𝜑 ∧ ( 𝑢 = 𝑋𝑣 = 𝑌 ) ) → 𝑢 = 𝑋 )
11 simprr ( ( 𝜑 ∧ ( 𝑢 = 𝑋𝑣 = 𝑌 ) ) → 𝑣 = 𝑌 )
12 10 11 oveq12d ( ( 𝜑 ∧ ( 𝑢 = 𝑋𝑣 = 𝑌 ) ) → ( 𝑢 𝐻 𝑣 ) = ( 𝑋 𝐻 𝑌 ) )
13 12 mpteq1d ( ( 𝜑 ∧ ( 𝑢 = 𝑋𝑣 = 𝑌 ) ) → ( 𝑓 ∈ ( 𝑢 𝐻 𝑣 ) ↦ { 𝑓 } ) = ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ↦ { 𝑓 } ) )
14 ovex ( 𝑋 𝐻 𝑌 ) ∈ V
15 14 mptex ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ↦ { 𝑓 } ) ∈ V
16 15 a1i ( 𝜑 → ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ↦ { 𝑓 } ) ∈ V )
17 9 13 4 5 16 ovmpod ( 𝜑 → ( 𝑋 𝑃 𝑌 ) = ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ↦ { 𝑓 } ) )