| Step |
Hyp |
Ref |
Expression |
| 1 |
|
swapf1a.o |
⊢ ( 𝜑 → ( 𝐶 swapF 𝐷 ) = 〈 𝑂 , 𝑃 〉 ) |
| 2 |
|
swapf1a.s |
⊢ 𝑆 = ( 𝐶 ×c 𝐷 ) |
| 3 |
|
swapf1a.b |
⊢ 𝐵 = ( Base ‘ 𝑆 ) |
| 4 |
|
swapf1a.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 5 |
|
swapf2a.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
| 6 |
|
swapf2a.h |
⊢ ( 𝜑 → 𝐻 = ( Hom ‘ 𝑆 ) ) |
| 7 |
2 3 4
|
elxpcbasex1 |
⊢ ( 𝜑 → 𝐶 ∈ V ) |
| 8 |
2 3 4
|
elxpcbasex2 |
⊢ ( 𝜑 → 𝐷 ∈ V ) |
| 9 |
7 8 2 3 6 1
|
swapf2fval |
⊢ ( 𝜑 → 𝑃 = ( 𝑢 ∈ 𝐵 , 𝑣 ∈ 𝐵 ↦ ( 𝑓 ∈ ( 𝑢 𝐻 𝑣 ) ↦ ∪ ◡ { 𝑓 } ) ) ) |
| 10 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑢 = 𝑋 ∧ 𝑣 = 𝑌 ) ) → 𝑢 = 𝑋 ) |
| 11 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑢 = 𝑋 ∧ 𝑣 = 𝑌 ) ) → 𝑣 = 𝑌 ) |
| 12 |
10 11
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑢 = 𝑋 ∧ 𝑣 = 𝑌 ) ) → ( 𝑢 𝐻 𝑣 ) = ( 𝑋 𝐻 𝑌 ) ) |
| 13 |
12
|
mpteq1d |
⊢ ( ( 𝜑 ∧ ( 𝑢 = 𝑋 ∧ 𝑣 = 𝑌 ) ) → ( 𝑓 ∈ ( 𝑢 𝐻 𝑣 ) ↦ ∪ ◡ { 𝑓 } ) = ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ↦ ∪ ◡ { 𝑓 } ) ) |
| 14 |
|
ovex |
⊢ ( 𝑋 𝐻 𝑌 ) ∈ V |
| 15 |
14
|
mptex |
⊢ ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ↦ ∪ ◡ { 𝑓 } ) ∈ V |
| 16 |
15
|
a1i |
⊢ ( 𝜑 → ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ↦ ∪ ◡ { 𝑓 } ) ∈ V ) |
| 17 |
9 13 4 5 16
|
ovmpod |
⊢ ( 𝜑 → ( 𝑋 𝑃 𝑌 ) = ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ↦ ∪ ◡ { 𝑓 } ) ) |