Metamath Proof Explorer


Theorem swapf2vala

Description: The morphism part of the swap functor swaps the morphisms. (Contributed by Zhi Wang, 7-Oct-2025)

Ref Expression
Hypotheses swapf1a.o
|- ( ph -> ( C swapF D ) = <. O , P >. )
swapf1a.s
|- S = ( C Xc. D )
swapf1a.b
|- B = ( Base ` S )
swapf1a.x
|- ( ph -> X e. B )
swapf2a.y
|- ( ph -> Y e. B )
swapf2a.h
|- ( ph -> H = ( Hom ` S ) )
Assertion swapf2vala
|- ( ph -> ( X P Y ) = ( f e. ( X H Y ) |-> U. `' { f } ) )

Proof

Step Hyp Ref Expression
1 swapf1a.o
 |-  ( ph -> ( C swapF D ) = <. O , P >. )
2 swapf1a.s
 |-  S = ( C Xc. D )
3 swapf1a.b
 |-  B = ( Base ` S )
4 swapf1a.x
 |-  ( ph -> X e. B )
5 swapf2a.y
 |-  ( ph -> Y e. B )
6 swapf2a.h
 |-  ( ph -> H = ( Hom ` S ) )
7 2 3 4 elxpcbasex1
 |-  ( ph -> C e. _V )
8 2 3 4 elxpcbasex2
 |-  ( ph -> D e. _V )
9 7 8 2 3 6 1 swapf2fval
 |-  ( ph -> P = ( u e. B , v e. B |-> ( f e. ( u H v ) |-> U. `' { f } ) ) )
10 simprl
 |-  ( ( ph /\ ( u = X /\ v = Y ) ) -> u = X )
11 simprr
 |-  ( ( ph /\ ( u = X /\ v = Y ) ) -> v = Y )
12 10 11 oveq12d
 |-  ( ( ph /\ ( u = X /\ v = Y ) ) -> ( u H v ) = ( X H Y ) )
13 12 mpteq1d
 |-  ( ( ph /\ ( u = X /\ v = Y ) ) -> ( f e. ( u H v ) |-> U. `' { f } ) = ( f e. ( X H Y ) |-> U. `' { f } ) )
14 ovex
 |-  ( X H Y ) e. _V
15 14 mptex
 |-  ( f e. ( X H Y ) |-> U. `' { f } ) e. _V
16 15 a1i
 |-  ( ph -> ( f e. ( X H Y ) |-> U. `' { f } ) e. _V )
17 9 13 4 5 16 ovmpod
 |-  ( ph -> ( X P Y ) = ( f e. ( X H Y ) |-> U. `' { f } ) )