| Step |
Hyp |
Ref |
Expression |
| 1 |
|
swapf1a.o |
|- ( ph -> ( C swapF D ) = <. O , P >. ) |
| 2 |
|
swapf1a.s |
|- S = ( C Xc. D ) |
| 3 |
|
swapf1a.b |
|- B = ( Base ` S ) |
| 4 |
|
swapf1a.x |
|- ( ph -> X e. B ) |
| 5 |
|
swapf2a.y |
|- ( ph -> Y e. B ) |
| 6 |
|
swapf2a.h |
|- ( ph -> H = ( Hom ` S ) ) |
| 7 |
2 3 4
|
elxpcbasex1 |
|- ( ph -> C e. _V ) |
| 8 |
2 3 4
|
elxpcbasex2 |
|- ( ph -> D e. _V ) |
| 9 |
7 8 2 3 6 1
|
swapf2fval |
|- ( ph -> P = ( u e. B , v e. B |-> ( f e. ( u H v ) |-> U. `' { f } ) ) ) |
| 10 |
|
simprl |
|- ( ( ph /\ ( u = X /\ v = Y ) ) -> u = X ) |
| 11 |
|
simprr |
|- ( ( ph /\ ( u = X /\ v = Y ) ) -> v = Y ) |
| 12 |
10 11
|
oveq12d |
|- ( ( ph /\ ( u = X /\ v = Y ) ) -> ( u H v ) = ( X H Y ) ) |
| 13 |
12
|
mpteq1d |
|- ( ( ph /\ ( u = X /\ v = Y ) ) -> ( f e. ( u H v ) |-> U. `' { f } ) = ( f e. ( X H Y ) |-> U. `' { f } ) ) |
| 14 |
|
ovex |
|- ( X H Y ) e. _V |
| 15 |
14
|
mptex |
|- ( f e. ( X H Y ) |-> U. `' { f } ) e. _V |
| 16 |
15
|
a1i |
|- ( ph -> ( f e. ( X H Y ) |-> U. `' { f } ) e. _V ) |
| 17 |
9 13 4 5 16
|
ovmpod |
|- ( ph -> ( X P Y ) = ( f e. ( X H Y ) |-> U. `' { f } ) ) |