Metamath Proof Explorer


Theorem elxpcbasex2

Description: A non-empty base set of the product category indicates the existence of the second factor of the product category. (Contributed by Zhi Wang, 8-Oct-2025) (Proof shortened by SN, 15-Oct-2025)

Ref Expression
Hypotheses elxpcbasex1.t
|- T = ( C Xc. D )
elxpcbasex1.b
|- B = ( Base ` T )
elxpcbasex1.x
|- ( ph -> X e. B )
Assertion elxpcbasex2
|- ( ph -> D e. _V )

Proof

Step Hyp Ref Expression
1 elxpcbasex1.t
 |-  T = ( C Xc. D )
2 elxpcbasex1.b
 |-  B = ( Base ` T )
3 elxpcbasex1.x
 |-  ( ph -> X e. B )
4 reldmxpc
 |-  Rel dom Xc.
5 4 1 2 elbasov
 |-  ( X e. B -> ( C e. _V /\ D e. _V ) )
6 3 5 syl
 |-  ( ph -> ( C e. _V /\ D e. _V ) )
7 6 simprd
 |-  ( ph -> D e. _V )