Metamath Proof Explorer


Theorem elxpcbasex2

Description: A non-empty base set of the product category indicates the existence of the second factor of the product category. (Contributed by Zhi Wang, 8-Oct-2025) (Proof shortened by SN, 15-Oct-2025)

Ref Expression
Hypotheses elxpcbasex1.t 𝑇 = ( 𝐶 ×c 𝐷 )
elxpcbasex1.b 𝐵 = ( Base ‘ 𝑇 )
elxpcbasex1.x ( 𝜑𝑋𝐵 )
Assertion elxpcbasex2 ( 𝜑𝐷 ∈ V )

Proof

Step Hyp Ref Expression
1 elxpcbasex1.t 𝑇 = ( 𝐶 ×c 𝐷 )
2 elxpcbasex1.b 𝐵 = ( Base ‘ 𝑇 )
3 elxpcbasex1.x ( 𝜑𝑋𝐵 )
4 reldmxpc Rel dom ×c
5 4 1 2 elbasov ( 𝑋𝐵 → ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) )
6 3 5 syl ( 𝜑 → ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) )
7 6 simprd ( 𝜑𝐷 ∈ V )