| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elxpcbasex1.t |
|- T = ( C Xc. D ) |
| 2 |
|
elxpcbasex1.b |
|- B = ( Base ` T ) |
| 3 |
|
elxpcbasex1.x |
|- ( ph -> X e. B ) |
| 4 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
| 5 |
|
eqid |
|- ( Base ` D ) = ( Base ` D ) |
| 6 |
1 4 5
|
xpcbas |
|- ( ( Base ` C ) X. ( Base ` D ) ) = ( Base ` T ) |
| 7 |
2 6
|
eqtr4i |
|- B = ( ( Base ` C ) X. ( Base ` D ) ) |
| 8 |
3 7
|
eleqtrdi |
|- ( ph -> X e. ( ( Base ` C ) X. ( Base ` D ) ) ) |
| 9 |
|
xp2nd |
|- ( X e. ( ( Base ` C ) X. ( Base ` D ) ) -> ( 2nd ` X ) e. ( Base ` D ) ) |
| 10 |
8 9
|
syl |
|- ( ph -> ( 2nd ` X ) e. ( Base ` D ) ) |
| 11 |
10
|
elfvexd |
|- ( ph -> D e. _V ) |