Metamath Proof Explorer


Theorem elxpcbasex2ALT

Description: Alternate proof of elxpcbasex2 . (Contributed by Zhi Wang, 8-Oct-2025) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses elxpcbasex1.t T = C × c D
elxpcbasex1.b B = Base T
elxpcbasex1.x φ X B
Assertion elxpcbasex2ALT φ D V

Proof

Step Hyp Ref Expression
1 elxpcbasex1.t T = C × c D
2 elxpcbasex1.b B = Base T
3 elxpcbasex1.x φ X B
4 eqid Base C = Base C
5 eqid Base D = Base D
6 1 4 5 xpcbas Base C × Base D = Base T
7 2 6 eqtr4i B = Base C × Base D
8 3 7 eleqtrdi φ X Base C × Base D
9 xp2nd X Base C × Base D 2 nd X Base D
10 8 9 syl φ 2 nd X Base D
11 10 elfvexd φ D V