Metamath Proof Explorer


Theorem swapf2val

Description: The morphism part of the swap functor swaps the morphisms. (Contributed by Zhi Wang, 7-Oct-2025)

Ref Expression
Hypotheses swapf1.o
|- ( ph -> ( C swapF D ) = <. O , P >. )
swapf1.x
|- ( ph -> X e. ( Base ` C ) )
swapf1.y
|- ( ph -> Y e. ( Base ` D ) )
swapf2.z
|- ( ph -> Z e. ( Base ` C ) )
swapf2.w
|- ( ph -> W e. ( Base ` D ) )
swapf2val.s
|- S = ( C Xc. D )
swapf2val.h
|- ( ph -> H = ( Hom ` S ) )
Assertion swapf2val
|- ( ph -> ( <. X , Y >. P <. Z , W >. ) = ( f e. ( <. X , Y >. H <. Z , W >. ) |-> U. `' { f } ) )

Proof

Step Hyp Ref Expression
1 swapf1.o
 |-  ( ph -> ( C swapF D ) = <. O , P >. )
2 swapf1.x
 |-  ( ph -> X e. ( Base ` C ) )
3 swapf1.y
 |-  ( ph -> Y e. ( Base ` D ) )
4 swapf2.z
 |-  ( ph -> Z e. ( Base ` C ) )
5 swapf2.w
 |-  ( ph -> W e. ( Base ` D ) )
6 swapf2val.s
 |-  S = ( C Xc. D )
7 swapf2val.h
 |-  ( ph -> H = ( Hom ` S ) )
8 eqid
 |-  ( Base ` C ) = ( Base ` C )
9 eqid
 |-  ( Base ` D ) = ( Base ` D )
10 6 8 9 xpcbas
 |-  ( ( Base ` C ) X. ( Base ` D ) ) = ( Base ` S )
11 2 3 opelxpd
 |-  ( ph -> <. X , Y >. e. ( ( Base ` C ) X. ( Base ` D ) ) )
12 4 5 opelxpd
 |-  ( ph -> <. Z , W >. e. ( ( Base ` C ) X. ( Base ` D ) ) )
13 1 6 10 11 12 7 swapf2vala
 |-  ( ph -> ( <. X , Y >. P <. Z , W >. ) = ( f e. ( <. X , Y >. H <. Z , W >. ) |-> U. `' { f } ) )