| Step |
Hyp |
Ref |
Expression |
| 1 |
|
swapf1.o |
|- ( ph -> ( C swapF D ) = <. O , P >. ) |
| 2 |
|
swapf1.x |
|- ( ph -> X e. ( Base ` C ) ) |
| 3 |
|
swapf1.y |
|- ( ph -> Y e. ( Base ` D ) ) |
| 4 |
|
swapf2.z |
|- ( ph -> Z e. ( Base ` C ) ) |
| 5 |
|
swapf2.w |
|- ( ph -> W e. ( Base ` D ) ) |
| 6 |
|
swapf2val.s |
|- S = ( C Xc. D ) |
| 7 |
|
swapf2val.h |
|- ( ph -> H = ( Hom ` S ) ) |
| 8 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
| 9 |
|
eqid |
|- ( Base ` D ) = ( Base ` D ) |
| 10 |
6 8 9
|
xpcbas |
|- ( ( Base ` C ) X. ( Base ` D ) ) = ( Base ` S ) |
| 11 |
2 3
|
opelxpd |
|- ( ph -> <. X , Y >. e. ( ( Base ` C ) X. ( Base ` D ) ) ) |
| 12 |
4 5
|
opelxpd |
|- ( ph -> <. Z , W >. e. ( ( Base ` C ) X. ( Base ` D ) ) ) |
| 13 |
1 6 10 11 12 7
|
swapf2vala |
|- ( ph -> ( <. X , Y >. P <. Z , W >. ) = ( f e. ( <. X , Y >. H <. Z , W >. ) |-> U. `' { f } ) ) |