Metamath Proof Explorer


Theorem swapf2val

Description: The morphism part of the swap functor swaps the morphisms. (Contributed by Zhi Wang, 7-Oct-2025)

Ref Expression
Hypotheses swapf1.o No typesetting found for |- ( ph -> ( C swapF D ) = <. O , P >. ) with typecode |-
swapf1.x φ X Base C
swapf1.y φ Y Base D
swapf2.z φ Z Base C
swapf2.w φ W Base D
swapf2val.s S = C × c D
swapf2val.h φ H = Hom S
Assertion swapf2val φ X Y P Z W = f X Y H Z W f -1

Proof

Step Hyp Ref Expression
1 swapf1.o Could not format ( ph -> ( C swapF D ) = <. O , P >. ) : No typesetting found for |- ( ph -> ( C swapF D ) = <. O , P >. ) with typecode |-
2 swapf1.x φ X Base C
3 swapf1.y φ Y Base D
4 swapf2.z φ Z Base C
5 swapf2.w φ W Base D
6 swapf2val.s S = C × c D
7 swapf2val.h φ H = Hom S
8 eqid Base C = Base C
9 eqid Base D = Base D
10 6 8 9 xpcbas Base C × Base D = Base S
11 2 3 opelxpd φ X Y Base C × Base D
12 4 5 opelxpd φ Z W Base C × Base D
13 1 6 10 11 12 7 swapf2vala φ X Y P Z W = f X Y H Z W f -1