Metamath Proof Explorer


Theorem swapf2

Description: The morphism part of the swap functor swaps the morphisms. (Contributed by Zhi Wang, 7-Oct-2025)

Ref Expression
Hypotheses swapf1.o No typesetting found for |- ( ph -> ( C swapF D ) = <. O , P >. ) with typecode |-
swapf1.x φ X Base C
swapf1.y φ Y Base D
swapf2.z φ Z Base C
swapf2.w φ W Base D
swapf2.f φ F X Hom C Z
swapf2.g φ G Y Hom D W
Assertion swapf2 φ F X Y P Z W G = G F

Proof

Step Hyp Ref Expression
1 swapf1.o Could not format ( ph -> ( C swapF D ) = <. O , P >. ) : No typesetting found for |- ( ph -> ( C swapF D ) = <. O , P >. ) with typecode |-
2 swapf1.x φ X Base C
3 swapf1.y φ Y Base D
4 swapf2.z φ Z Base C
5 swapf2.w φ W Base D
6 swapf2.f φ F X Hom C Z
7 swapf2.g φ G Y Hom D W
8 df-ov F X Y P Z W G = X Y P Z W F G
9 eqid C × c D = C × c D
10 eqidd φ Hom C × c D = Hom C × c D
11 1 2 3 4 5 9 10 swapf2val φ X Y P Z W = f X Y Hom C × c D Z W f -1
12 simpr φ f = F G f = F G
13 12 sneqd φ f = F G f = F G
14 13 cnveqd φ f = F G f -1 = F G -1
15 14 unieqd φ f = F G f -1 = F G -1
16 opswap F G -1 = G F
17 15 16 eqtrdi φ f = F G f -1 = G F
18 6 7 opelxpd φ F G X Hom C Z × Y Hom D W
19 eqid Base C = Base C
20 eqid Base D = Base D
21 eqid Hom C = Hom C
22 eqid Hom D = Hom D
23 eqid Hom C × c D = Hom C × c D
24 9 19 20 21 22 2 3 4 5 23 xpchom2 φ X Y Hom C × c D Z W = X Hom C Z × Y Hom D W
25 18 24 eleqtrrd φ F G X Y Hom C × c D Z W
26 opex G F V
27 26 a1i φ G F V
28 11 17 25 27 fvmptd φ X Y P Z W F G = G F
29 8 28 eqtrid φ F X Y P Z W G = G F