| Step |
Hyp |
Ref |
Expression |
| 1 |
|
swapf1.o |
|- ( ph -> ( C swapF D ) = <. O , P >. ) |
| 2 |
|
swapf1.x |
|- ( ph -> X e. ( Base ` C ) ) |
| 3 |
|
swapf1.y |
|- ( ph -> Y e. ( Base ` D ) ) |
| 4 |
|
swapf2.z |
|- ( ph -> Z e. ( Base ` C ) ) |
| 5 |
|
swapf2.w |
|- ( ph -> W e. ( Base ` D ) ) |
| 6 |
|
swapf2.f |
|- ( ph -> F e. ( X ( Hom ` C ) Z ) ) |
| 7 |
|
swapf2.g |
|- ( ph -> G e. ( Y ( Hom ` D ) W ) ) |
| 8 |
|
df-ov |
|- ( F ( <. X , Y >. P <. Z , W >. ) G ) = ( ( <. X , Y >. P <. Z , W >. ) ` <. F , G >. ) |
| 9 |
|
eqid |
|- ( C Xc. D ) = ( C Xc. D ) |
| 10 |
|
eqidd |
|- ( ph -> ( Hom ` ( C Xc. D ) ) = ( Hom ` ( C Xc. D ) ) ) |
| 11 |
1 2 3 4 5 9 10
|
swapf2val |
|- ( ph -> ( <. X , Y >. P <. Z , W >. ) = ( f e. ( <. X , Y >. ( Hom ` ( C Xc. D ) ) <. Z , W >. ) |-> U. `' { f } ) ) |
| 12 |
|
simpr |
|- ( ( ph /\ f = <. F , G >. ) -> f = <. F , G >. ) |
| 13 |
12
|
sneqd |
|- ( ( ph /\ f = <. F , G >. ) -> { f } = { <. F , G >. } ) |
| 14 |
13
|
cnveqd |
|- ( ( ph /\ f = <. F , G >. ) -> `' { f } = `' { <. F , G >. } ) |
| 15 |
14
|
unieqd |
|- ( ( ph /\ f = <. F , G >. ) -> U. `' { f } = U. `' { <. F , G >. } ) |
| 16 |
|
opswap |
|- U. `' { <. F , G >. } = <. G , F >. |
| 17 |
15 16
|
eqtrdi |
|- ( ( ph /\ f = <. F , G >. ) -> U. `' { f } = <. G , F >. ) |
| 18 |
6 7
|
opelxpd |
|- ( ph -> <. F , G >. e. ( ( X ( Hom ` C ) Z ) X. ( Y ( Hom ` D ) W ) ) ) |
| 19 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
| 20 |
|
eqid |
|- ( Base ` D ) = ( Base ` D ) |
| 21 |
|
eqid |
|- ( Hom ` C ) = ( Hom ` C ) |
| 22 |
|
eqid |
|- ( Hom ` D ) = ( Hom ` D ) |
| 23 |
|
eqid |
|- ( Hom ` ( C Xc. D ) ) = ( Hom ` ( C Xc. D ) ) |
| 24 |
9 19 20 21 22 2 3 4 5 23
|
xpchom2 |
|- ( ph -> ( <. X , Y >. ( Hom ` ( C Xc. D ) ) <. Z , W >. ) = ( ( X ( Hom ` C ) Z ) X. ( Y ( Hom ` D ) W ) ) ) |
| 25 |
18 24
|
eleqtrrd |
|- ( ph -> <. F , G >. e. ( <. X , Y >. ( Hom ` ( C Xc. D ) ) <. Z , W >. ) ) |
| 26 |
|
opex |
|- <. G , F >. e. _V |
| 27 |
26
|
a1i |
|- ( ph -> <. G , F >. e. _V ) |
| 28 |
11 17 25 27
|
fvmptd |
|- ( ph -> ( ( <. X , Y >. P <. Z , W >. ) ` <. F , G >. ) = <. G , F >. ) |
| 29 |
8 28
|
eqtrid |
|- ( ph -> ( F ( <. X , Y >. P <. Z , W >. ) G ) = <. G , F >. ) |