Metamath Proof Explorer


Theorem swapf1f1o

Description: The object part of the swap functor is a bijection between base sets. (Contributed by Zhi Wang, 8-Oct-2025)

Ref Expression
Hypotheses swapf1f1o.o
|- ( ph -> ( C swapF D ) = <. O , P >. )
swapf1f1o.s
|- S = ( C Xc. D )
swapf1f1o.t
|- T = ( D Xc. C )
swapf1f1o.c
|- ( ph -> C e. U )
swapf1f1o.d
|- ( ph -> D e. V )
swapf1f1o.b
|- B = ( Base ` S )
swapf1f1o.a
|- A = ( Base ` T )
Assertion swapf1f1o
|- ( ph -> O : B -1-1-onto-> A )

Proof

Step Hyp Ref Expression
1 swapf1f1o.o
 |-  ( ph -> ( C swapF D ) = <. O , P >. )
2 swapf1f1o.s
 |-  S = ( C Xc. D )
3 swapf1f1o.t
 |-  T = ( D Xc. C )
4 swapf1f1o.c
 |-  ( ph -> C e. U )
5 swapf1f1o.d
 |-  ( ph -> D e. V )
6 swapf1f1o.b
 |-  B = ( Base ` S )
7 swapf1f1o.a
 |-  A = ( Base ` T )
8 eqid
 |-  ( Base ` C ) = ( Base ` C )
9 eqid
 |-  ( Base ` D ) = ( Base ` D )
10 2 8 9 xpcbas
 |-  ( ( Base ` C ) X. ( Base ` D ) ) = ( Base ` S )
11 6 10 eqtr4i
 |-  B = ( ( Base ` C ) X. ( Base ` D ) )
12 11 mpteq1i
 |-  ( x e. B |-> U. `' { x } ) = ( x e. ( ( Base ` C ) X. ( Base ` D ) ) |-> U. `' { x } )
13 12 xpcomf1o
 |-  ( x e. B |-> U. `' { x } ) : ( ( Base ` C ) X. ( Base ` D ) ) -1-1-onto-> ( ( Base ` D ) X. ( Base ` C ) )
14 4 5 2 6 1 swapf1val
 |-  ( ph -> O = ( x e. B |-> U. `' { x } ) )
15 11 a1i
 |-  ( ph -> B = ( ( Base ` C ) X. ( Base ` D ) ) )
16 3 9 8 xpcbas
 |-  ( ( Base ` D ) X. ( Base ` C ) ) = ( Base ` T )
17 7 16 eqtr4i
 |-  A = ( ( Base ` D ) X. ( Base ` C ) )
18 17 a1i
 |-  ( ph -> A = ( ( Base ` D ) X. ( Base ` C ) ) )
19 14 15 18 f1oeq123d
 |-  ( ph -> ( O : B -1-1-onto-> A <-> ( x e. B |-> U. `' { x } ) : ( ( Base ` C ) X. ( Base ` D ) ) -1-1-onto-> ( ( Base ` D ) X. ( Base ` C ) ) ) )
20 13 19 mpbiri
 |-  ( ph -> O : B -1-1-onto-> A )