| Step |
Hyp |
Ref |
Expression |
| 1 |
|
swapf1f1o.o |
|- ( ph -> ( C swapF D ) = <. O , P >. ) |
| 2 |
|
swapf1f1o.s |
|- S = ( C Xc. D ) |
| 3 |
|
swapf1f1o.t |
|- T = ( D Xc. C ) |
| 4 |
|
swapf1f1o.c |
|- ( ph -> C e. U ) |
| 5 |
|
swapf1f1o.d |
|- ( ph -> D e. V ) |
| 6 |
|
swapf1f1o.b |
|- B = ( Base ` S ) |
| 7 |
|
swapf1f1o.a |
|- A = ( Base ` T ) |
| 8 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
| 9 |
|
eqid |
|- ( Base ` D ) = ( Base ` D ) |
| 10 |
2 8 9
|
xpcbas |
|- ( ( Base ` C ) X. ( Base ` D ) ) = ( Base ` S ) |
| 11 |
6 10
|
eqtr4i |
|- B = ( ( Base ` C ) X. ( Base ` D ) ) |
| 12 |
11
|
mpteq1i |
|- ( x e. B |-> U. `' { x } ) = ( x e. ( ( Base ` C ) X. ( Base ` D ) ) |-> U. `' { x } ) |
| 13 |
12
|
xpcomf1o |
|- ( x e. B |-> U. `' { x } ) : ( ( Base ` C ) X. ( Base ` D ) ) -1-1-onto-> ( ( Base ` D ) X. ( Base ` C ) ) |
| 14 |
4 5 2 6 1
|
swapf1val |
|- ( ph -> O = ( x e. B |-> U. `' { x } ) ) |
| 15 |
11
|
a1i |
|- ( ph -> B = ( ( Base ` C ) X. ( Base ` D ) ) ) |
| 16 |
3 9 8
|
xpcbas |
|- ( ( Base ` D ) X. ( Base ` C ) ) = ( Base ` T ) |
| 17 |
7 16
|
eqtr4i |
|- A = ( ( Base ` D ) X. ( Base ` C ) ) |
| 18 |
17
|
a1i |
|- ( ph -> A = ( ( Base ` D ) X. ( Base ` C ) ) ) |
| 19 |
14 15 18
|
f1oeq123d |
|- ( ph -> ( O : B -1-1-onto-> A <-> ( x e. B |-> U. `' { x } ) : ( ( Base ` C ) X. ( Base ` D ) ) -1-1-onto-> ( ( Base ` D ) X. ( Base ` C ) ) ) ) |
| 20 |
13 19
|
mpbiri |
|- ( ph -> O : B -1-1-onto-> A ) |