| Step |
Hyp |
Ref |
Expression |
| 1 |
|
swapf1f1o.o |
|- ( ph -> ( C swapF D ) = <. O , P >. ) |
| 2 |
|
swapf1f1o.s |
|- S = ( C Xc. D ) |
| 3 |
|
swapf1f1o.t |
|- T = ( D Xc. C ) |
| 4 |
|
swapf2f1o.h |
|- H = ( Hom ` S ) |
| 5 |
|
swapf2f1o.j |
|- J = ( Hom ` T ) |
| 6 |
|
swapf2f1o.x |
|- ( ph -> X e. ( Base ` C ) ) |
| 7 |
|
swapf2f1o.y |
|- ( ph -> Y e. ( Base ` D ) ) |
| 8 |
|
swapf2f1o.z |
|- ( ph -> Z e. ( Base ` C ) ) |
| 9 |
|
swapf2f1o.w |
|- ( ph -> W e. ( Base ` D ) ) |
| 10 |
|
eqid |
|- ( f e. ( ( X ( Hom ` C ) Z ) X. ( Y ( Hom ` D ) W ) ) |-> U. `' { f } ) = ( f e. ( ( X ( Hom ` C ) Z ) X. ( Y ( Hom ` D ) W ) ) |-> U. `' { f } ) |
| 11 |
10
|
xpcomf1o |
|- ( f e. ( ( X ( Hom ` C ) Z ) X. ( Y ( Hom ` D ) W ) ) |-> U. `' { f } ) : ( ( X ( Hom ` C ) Z ) X. ( Y ( Hom ` D ) W ) ) -1-1-onto-> ( ( Y ( Hom ` D ) W ) X. ( X ( Hom ` C ) Z ) ) |
| 12 |
4
|
a1i |
|- ( ph -> H = ( Hom ` S ) ) |
| 13 |
1 6 7 8 9 2 12
|
swapf2val |
|- ( ph -> ( <. X , Y >. P <. Z , W >. ) = ( f e. ( <. X , Y >. H <. Z , W >. ) |-> U. `' { f } ) ) |
| 14 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
| 15 |
|
eqid |
|- ( Base ` D ) = ( Base ` D ) |
| 16 |
|
eqid |
|- ( Hom ` C ) = ( Hom ` C ) |
| 17 |
|
eqid |
|- ( Hom ` D ) = ( Hom ` D ) |
| 18 |
2 14 15 16 17 6 7 8 9 4
|
xpchom2 |
|- ( ph -> ( <. X , Y >. H <. Z , W >. ) = ( ( X ( Hom ` C ) Z ) X. ( Y ( Hom ` D ) W ) ) ) |
| 19 |
18
|
mpteq1d |
|- ( ph -> ( f e. ( <. X , Y >. H <. Z , W >. ) |-> U. `' { f } ) = ( f e. ( ( X ( Hom ` C ) Z ) X. ( Y ( Hom ` D ) W ) ) |-> U. `' { f } ) ) |
| 20 |
13 19
|
eqtrd |
|- ( ph -> ( <. X , Y >. P <. Z , W >. ) = ( f e. ( ( X ( Hom ` C ) Z ) X. ( Y ( Hom ` D ) W ) ) |-> U. `' { f } ) ) |
| 21 |
3 15 14 17 16 7 6 9 8 5
|
xpchom2 |
|- ( ph -> ( <. Y , X >. J <. W , Z >. ) = ( ( Y ( Hom ` D ) W ) X. ( X ( Hom ` C ) Z ) ) ) |
| 22 |
20 18 21
|
f1oeq123d |
|- ( ph -> ( ( <. X , Y >. P <. Z , W >. ) : ( <. X , Y >. H <. Z , W >. ) -1-1-onto-> ( <. Y , X >. J <. W , Z >. ) <-> ( f e. ( ( X ( Hom ` C ) Z ) X. ( Y ( Hom ` D ) W ) ) |-> U. `' { f } ) : ( ( X ( Hom ` C ) Z ) X. ( Y ( Hom ` D ) W ) ) -1-1-onto-> ( ( Y ( Hom ` D ) W ) X. ( X ( Hom ` C ) Z ) ) ) ) |
| 23 |
11 22
|
mpbiri |
|- ( ph -> ( <. X , Y >. P <. Z , W >. ) : ( <. X , Y >. H <. Z , W >. ) -1-1-onto-> ( <. Y , X >. J <. W , Z >. ) ) |