Metamath Proof Explorer


Theorem swapf2f1o

Description: The morphism part of the swap functor is a bijection between hom-sets. (Contributed by Zhi Wang, 8-Oct-2025)

Ref Expression
Hypotheses swapf1f1o.o No typesetting found for |- ( ph -> ( C swapF D ) = <. O , P >. ) with typecode |-
swapf1f1o.s S = C × c D
swapf1f1o.t T = D × c C
swapf2f1o.h H = Hom S
swapf2f1o.j J = Hom T
swapf2f1o.x φ X Base C
swapf2f1o.y φ Y Base D
swapf2f1o.z φ Z Base C
swapf2f1o.w φ W Base D
Assertion swapf2f1o φ X Y P Z W : X Y H Z W 1-1 onto Y X J W Z

Proof

Step Hyp Ref Expression
1 swapf1f1o.o Could not format ( ph -> ( C swapF D ) = <. O , P >. ) : No typesetting found for |- ( ph -> ( C swapF D ) = <. O , P >. ) with typecode |-
2 swapf1f1o.s S = C × c D
3 swapf1f1o.t T = D × c C
4 swapf2f1o.h H = Hom S
5 swapf2f1o.j J = Hom T
6 swapf2f1o.x φ X Base C
7 swapf2f1o.y φ Y Base D
8 swapf2f1o.z φ Z Base C
9 swapf2f1o.w φ W Base D
10 eqid f X Hom C Z × Y Hom D W f -1 = f X Hom C Z × Y Hom D W f -1
11 10 xpcomf1o f X Hom C Z × Y Hom D W f -1 : X Hom C Z × Y Hom D W 1-1 onto Y Hom D W × X Hom C Z
12 4 a1i φ H = Hom S
13 1 6 7 8 9 2 12 swapf2val φ X Y P Z W = f X Y H Z W f -1
14 eqid Base C = Base C
15 eqid Base D = Base D
16 eqid Hom C = Hom C
17 eqid Hom D = Hom D
18 2 14 15 16 17 6 7 8 9 4 xpchom2 φ X Y H Z W = X Hom C Z × Y Hom D W
19 18 mpteq1d φ f X Y H Z W f -1 = f X Hom C Z × Y Hom D W f -1
20 13 19 eqtrd φ X Y P Z W = f X Hom C Z × Y Hom D W f -1
21 3 15 14 17 16 7 6 9 8 5 xpchom2 φ Y X J W Z = Y Hom D W × X Hom C Z
22 20 18 21 f1oeq123d φ X Y P Z W : X Y H Z W 1-1 onto Y X J W Z f X Hom C Z × Y Hom D W f -1 : X Hom C Z × Y Hom D W 1-1 onto Y Hom D W × X Hom C Z
23 11 22 mpbiri φ X Y P Z W : X Y H Z W 1-1 onto Y X J W Z