Metamath Proof Explorer


Theorem swapf2f1o

Description: The morphism part of the swap functor is a bijection between hom-sets. (Contributed by Zhi Wang, 8-Oct-2025)

Ref Expression
Hypotheses swapf1f1o.o ( 𝜑 → ( 𝐶 swapF 𝐷 ) = ⟨ 𝑂 , 𝑃 ⟩ )
swapf1f1o.s 𝑆 = ( 𝐶 ×c 𝐷 )
swapf1f1o.t 𝑇 = ( 𝐷 ×c 𝐶 )
swapf2f1o.h 𝐻 = ( Hom ‘ 𝑆 )
swapf2f1o.j 𝐽 = ( Hom ‘ 𝑇 )
swapf2f1o.x ( 𝜑𝑋 ∈ ( Base ‘ 𝐶 ) )
swapf2f1o.y ( 𝜑𝑌 ∈ ( Base ‘ 𝐷 ) )
swapf2f1o.z ( 𝜑𝑍 ∈ ( Base ‘ 𝐶 ) )
swapf2f1o.w ( 𝜑𝑊 ∈ ( Base ‘ 𝐷 ) )
Assertion swapf2f1o ( 𝜑 → ( ⟨ 𝑋 , 𝑌𝑃𝑍 , 𝑊 ⟩ ) : ( ⟨ 𝑋 , 𝑌𝐻𝑍 , 𝑊 ⟩ ) –1-1-onto→ ( ⟨ 𝑌 , 𝑋𝐽𝑊 , 𝑍 ⟩ ) )

Proof

Step Hyp Ref Expression
1 swapf1f1o.o ( 𝜑 → ( 𝐶 swapF 𝐷 ) = ⟨ 𝑂 , 𝑃 ⟩ )
2 swapf1f1o.s 𝑆 = ( 𝐶 ×c 𝐷 )
3 swapf1f1o.t 𝑇 = ( 𝐷 ×c 𝐶 )
4 swapf2f1o.h 𝐻 = ( Hom ‘ 𝑆 )
5 swapf2f1o.j 𝐽 = ( Hom ‘ 𝑇 )
6 swapf2f1o.x ( 𝜑𝑋 ∈ ( Base ‘ 𝐶 ) )
7 swapf2f1o.y ( 𝜑𝑌 ∈ ( Base ‘ 𝐷 ) )
8 swapf2f1o.z ( 𝜑𝑍 ∈ ( Base ‘ 𝐶 ) )
9 swapf2f1o.w ( 𝜑𝑊 ∈ ( Base ‘ 𝐷 ) )
10 eqid ( 𝑓 ∈ ( ( 𝑋 ( Hom ‘ 𝐶 ) 𝑍 ) × ( 𝑌 ( Hom ‘ 𝐷 ) 𝑊 ) ) ↦ { 𝑓 } ) = ( 𝑓 ∈ ( ( 𝑋 ( Hom ‘ 𝐶 ) 𝑍 ) × ( 𝑌 ( Hom ‘ 𝐷 ) 𝑊 ) ) ↦ { 𝑓 } )
11 10 xpcomf1o ( 𝑓 ∈ ( ( 𝑋 ( Hom ‘ 𝐶 ) 𝑍 ) × ( 𝑌 ( Hom ‘ 𝐷 ) 𝑊 ) ) ↦ { 𝑓 } ) : ( ( 𝑋 ( Hom ‘ 𝐶 ) 𝑍 ) × ( 𝑌 ( Hom ‘ 𝐷 ) 𝑊 ) ) –1-1-onto→ ( ( 𝑌 ( Hom ‘ 𝐷 ) 𝑊 ) × ( 𝑋 ( Hom ‘ 𝐶 ) 𝑍 ) )
12 4 a1i ( 𝜑𝐻 = ( Hom ‘ 𝑆 ) )
13 1 6 7 8 9 2 12 swapf2val ( 𝜑 → ( ⟨ 𝑋 , 𝑌𝑃𝑍 , 𝑊 ⟩ ) = ( 𝑓 ∈ ( ⟨ 𝑋 , 𝑌𝐻𝑍 , 𝑊 ⟩ ) ↦ { 𝑓 } ) )
14 eqid ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 )
15 eqid ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 )
16 eqid ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 )
17 eqid ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 )
18 2 14 15 16 17 6 7 8 9 4 xpchom2 ( 𝜑 → ( ⟨ 𝑋 , 𝑌𝐻𝑍 , 𝑊 ⟩ ) = ( ( 𝑋 ( Hom ‘ 𝐶 ) 𝑍 ) × ( 𝑌 ( Hom ‘ 𝐷 ) 𝑊 ) ) )
19 18 mpteq1d ( 𝜑 → ( 𝑓 ∈ ( ⟨ 𝑋 , 𝑌𝐻𝑍 , 𝑊 ⟩ ) ↦ { 𝑓 } ) = ( 𝑓 ∈ ( ( 𝑋 ( Hom ‘ 𝐶 ) 𝑍 ) × ( 𝑌 ( Hom ‘ 𝐷 ) 𝑊 ) ) ↦ { 𝑓 } ) )
20 13 19 eqtrd ( 𝜑 → ( ⟨ 𝑋 , 𝑌𝑃𝑍 , 𝑊 ⟩ ) = ( 𝑓 ∈ ( ( 𝑋 ( Hom ‘ 𝐶 ) 𝑍 ) × ( 𝑌 ( Hom ‘ 𝐷 ) 𝑊 ) ) ↦ { 𝑓 } ) )
21 3 15 14 17 16 7 6 9 8 5 xpchom2 ( 𝜑 → ( ⟨ 𝑌 , 𝑋𝐽𝑊 , 𝑍 ⟩ ) = ( ( 𝑌 ( Hom ‘ 𝐷 ) 𝑊 ) × ( 𝑋 ( Hom ‘ 𝐶 ) 𝑍 ) ) )
22 20 18 21 f1oeq123d ( 𝜑 → ( ( ⟨ 𝑋 , 𝑌𝑃𝑍 , 𝑊 ⟩ ) : ( ⟨ 𝑋 , 𝑌𝐻𝑍 , 𝑊 ⟩ ) –1-1-onto→ ( ⟨ 𝑌 , 𝑋𝐽𝑊 , 𝑍 ⟩ ) ↔ ( 𝑓 ∈ ( ( 𝑋 ( Hom ‘ 𝐶 ) 𝑍 ) × ( 𝑌 ( Hom ‘ 𝐷 ) 𝑊 ) ) ↦ { 𝑓 } ) : ( ( 𝑋 ( Hom ‘ 𝐶 ) 𝑍 ) × ( 𝑌 ( Hom ‘ 𝐷 ) 𝑊 ) ) –1-1-onto→ ( ( 𝑌 ( Hom ‘ 𝐷 ) 𝑊 ) × ( 𝑋 ( Hom ‘ 𝐶 ) 𝑍 ) ) ) )
23 11 22 mpbiri ( 𝜑 → ( ⟨ 𝑋 , 𝑌𝑃𝑍 , 𝑊 ⟩ ) : ( ⟨ 𝑋 , 𝑌𝐻𝑍 , 𝑊 ⟩ ) –1-1-onto→ ( ⟨ 𝑌 , 𝑋𝐽𝑊 , 𝑍 ⟩ ) )