| Step |
Hyp |
Ref |
Expression |
| 1 |
|
swapf1f1o.o |
⊢ ( 𝜑 → ( 𝐶 swapF 𝐷 ) = 〈 𝑂 , 𝑃 〉 ) |
| 2 |
|
swapf1f1o.s |
⊢ 𝑆 = ( 𝐶 ×c 𝐷 ) |
| 3 |
|
swapf1f1o.t |
⊢ 𝑇 = ( 𝐷 ×c 𝐶 ) |
| 4 |
|
swapf2f1o.h |
⊢ 𝐻 = ( Hom ‘ 𝑆 ) |
| 5 |
|
swapf2f1o.j |
⊢ 𝐽 = ( Hom ‘ 𝑇 ) |
| 6 |
|
swapf2f1o.x |
⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝐶 ) ) |
| 7 |
|
swapf2f1o.y |
⊢ ( 𝜑 → 𝑌 ∈ ( Base ‘ 𝐷 ) ) |
| 8 |
|
swapf2f1o.z |
⊢ ( 𝜑 → 𝑍 ∈ ( Base ‘ 𝐶 ) ) |
| 9 |
|
swapf2f1o.w |
⊢ ( 𝜑 → 𝑊 ∈ ( Base ‘ 𝐷 ) ) |
| 10 |
|
eqid |
⊢ ( 𝑓 ∈ ( ( 𝑋 ( Hom ‘ 𝐶 ) 𝑍 ) × ( 𝑌 ( Hom ‘ 𝐷 ) 𝑊 ) ) ↦ ∪ ◡ { 𝑓 } ) = ( 𝑓 ∈ ( ( 𝑋 ( Hom ‘ 𝐶 ) 𝑍 ) × ( 𝑌 ( Hom ‘ 𝐷 ) 𝑊 ) ) ↦ ∪ ◡ { 𝑓 } ) |
| 11 |
10
|
xpcomf1o |
⊢ ( 𝑓 ∈ ( ( 𝑋 ( Hom ‘ 𝐶 ) 𝑍 ) × ( 𝑌 ( Hom ‘ 𝐷 ) 𝑊 ) ) ↦ ∪ ◡ { 𝑓 } ) : ( ( 𝑋 ( Hom ‘ 𝐶 ) 𝑍 ) × ( 𝑌 ( Hom ‘ 𝐷 ) 𝑊 ) ) –1-1-onto→ ( ( 𝑌 ( Hom ‘ 𝐷 ) 𝑊 ) × ( 𝑋 ( Hom ‘ 𝐶 ) 𝑍 ) ) |
| 12 |
4
|
a1i |
⊢ ( 𝜑 → 𝐻 = ( Hom ‘ 𝑆 ) ) |
| 13 |
1 6 7 8 9 2 12
|
swapf2val |
⊢ ( 𝜑 → ( 〈 𝑋 , 𝑌 〉 𝑃 〈 𝑍 , 𝑊 〉 ) = ( 𝑓 ∈ ( 〈 𝑋 , 𝑌 〉 𝐻 〈 𝑍 , 𝑊 〉 ) ↦ ∪ ◡ { 𝑓 } ) ) |
| 14 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
| 15 |
|
eqid |
⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) |
| 16 |
|
eqid |
⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) |
| 17 |
|
eqid |
⊢ ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 ) |
| 18 |
2 14 15 16 17 6 7 8 9 4
|
xpchom2 |
⊢ ( 𝜑 → ( 〈 𝑋 , 𝑌 〉 𝐻 〈 𝑍 , 𝑊 〉 ) = ( ( 𝑋 ( Hom ‘ 𝐶 ) 𝑍 ) × ( 𝑌 ( Hom ‘ 𝐷 ) 𝑊 ) ) ) |
| 19 |
18
|
mpteq1d |
⊢ ( 𝜑 → ( 𝑓 ∈ ( 〈 𝑋 , 𝑌 〉 𝐻 〈 𝑍 , 𝑊 〉 ) ↦ ∪ ◡ { 𝑓 } ) = ( 𝑓 ∈ ( ( 𝑋 ( Hom ‘ 𝐶 ) 𝑍 ) × ( 𝑌 ( Hom ‘ 𝐷 ) 𝑊 ) ) ↦ ∪ ◡ { 𝑓 } ) ) |
| 20 |
13 19
|
eqtrd |
⊢ ( 𝜑 → ( 〈 𝑋 , 𝑌 〉 𝑃 〈 𝑍 , 𝑊 〉 ) = ( 𝑓 ∈ ( ( 𝑋 ( Hom ‘ 𝐶 ) 𝑍 ) × ( 𝑌 ( Hom ‘ 𝐷 ) 𝑊 ) ) ↦ ∪ ◡ { 𝑓 } ) ) |
| 21 |
3 15 14 17 16 7 6 9 8 5
|
xpchom2 |
⊢ ( 𝜑 → ( 〈 𝑌 , 𝑋 〉 𝐽 〈 𝑊 , 𝑍 〉 ) = ( ( 𝑌 ( Hom ‘ 𝐷 ) 𝑊 ) × ( 𝑋 ( Hom ‘ 𝐶 ) 𝑍 ) ) ) |
| 22 |
20 18 21
|
f1oeq123d |
⊢ ( 𝜑 → ( ( 〈 𝑋 , 𝑌 〉 𝑃 〈 𝑍 , 𝑊 〉 ) : ( 〈 𝑋 , 𝑌 〉 𝐻 〈 𝑍 , 𝑊 〉 ) –1-1-onto→ ( 〈 𝑌 , 𝑋 〉 𝐽 〈 𝑊 , 𝑍 〉 ) ↔ ( 𝑓 ∈ ( ( 𝑋 ( Hom ‘ 𝐶 ) 𝑍 ) × ( 𝑌 ( Hom ‘ 𝐷 ) 𝑊 ) ) ↦ ∪ ◡ { 𝑓 } ) : ( ( 𝑋 ( Hom ‘ 𝐶 ) 𝑍 ) × ( 𝑌 ( Hom ‘ 𝐷 ) 𝑊 ) ) –1-1-onto→ ( ( 𝑌 ( Hom ‘ 𝐷 ) 𝑊 ) × ( 𝑋 ( Hom ‘ 𝐶 ) 𝑍 ) ) ) ) |
| 23 |
11 22
|
mpbiri |
⊢ ( 𝜑 → ( 〈 𝑋 , 𝑌 〉 𝑃 〈 𝑍 , 𝑊 〉 ) : ( 〈 𝑋 , 𝑌 〉 𝐻 〈 𝑍 , 𝑊 〉 ) –1-1-onto→ ( 〈 𝑌 , 𝑋 〉 𝐽 〈 𝑊 , 𝑍 〉 ) ) |