| Step |
Hyp |
Ref |
Expression |
| 1 |
|
swapf1f1o.o |
|- ( ph -> ( C swapF D ) = <. O , P >. ) |
| 2 |
|
swapf1f1o.s |
|- S = ( C Xc. D ) |
| 3 |
|
swapf1f1o.t |
|- T = ( D Xc. C ) |
| 4 |
|
swapf2f1o.h |
|- H = ( Hom ` S ) |
| 5 |
|
swapf2f1o.j |
|- J = ( Hom ` T ) |
| 6 |
|
swapf2f1oa.b |
|- B = ( Base ` S ) |
| 7 |
|
swapf2f1oa.x |
|- ( ph -> X e. B ) |
| 8 |
|
swapf2f1oa.y |
|- ( ph -> Y e. B ) |
| 9 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
| 10 |
|
eqid |
|- ( Base ` D ) = ( Base ` D ) |
| 11 |
2 9 10
|
xpcbas |
|- ( ( Base ` C ) X. ( Base ` D ) ) = ( Base ` S ) |
| 12 |
6 11
|
eqtr4i |
|- B = ( ( Base ` C ) X. ( Base ` D ) ) |
| 13 |
7 12
|
eleqtrdi |
|- ( ph -> X e. ( ( Base ` C ) X. ( Base ` D ) ) ) |
| 14 |
|
xp1st |
|- ( X e. ( ( Base ` C ) X. ( Base ` D ) ) -> ( 1st ` X ) e. ( Base ` C ) ) |
| 15 |
13 14
|
syl |
|- ( ph -> ( 1st ` X ) e. ( Base ` C ) ) |
| 16 |
|
xp2nd |
|- ( X e. ( ( Base ` C ) X. ( Base ` D ) ) -> ( 2nd ` X ) e. ( Base ` D ) ) |
| 17 |
13 16
|
syl |
|- ( ph -> ( 2nd ` X ) e. ( Base ` D ) ) |
| 18 |
8 12
|
eleqtrdi |
|- ( ph -> Y e. ( ( Base ` C ) X. ( Base ` D ) ) ) |
| 19 |
|
xp1st |
|- ( Y e. ( ( Base ` C ) X. ( Base ` D ) ) -> ( 1st ` Y ) e. ( Base ` C ) ) |
| 20 |
18 19
|
syl |
|- ( ph -> ( 1st ` Y ) e. ( Base ` C ) ) |
| 21 |
|
xp2nd |
|- ( Y e. ( ( Base ` C ) X. ( Base ` D ) ) -> ( 2nd ` Y ) e. ( Base ` D ) ) |
| 22 |
18 21
|
syl |
|- ( ph -> ( 2nd ` Y ) e. ( Base ` D ) ) |
| 23 |
1 2 3 4 5 15 17 20 22
|
swapf2f1o |
|- ( ph -> ( <. ( 1st ` X ) , ( 2nd ` X ) >. P <. ( 1st ` Y ) , ( 2nd ` Y ) >. ) : ( <. ( 1st ` X ) , ( 2nd ` X ) >. H <. ( 1st ` Y ) , ( 2nd ` Y ) >. ) -1-1-onto-> ( <. ( 2nd ` X ) , ( 1st ` X ) >. J <. ( 2nd ` Y ) , ( 1st ` Y ) >. ) ) |
| 24 |
|
1st2nd2 |
|- ( X e. ( ( Base ` C ) X. ( Base ` D ) ) -> X = <. ( 1st ` X ) , ( 2nd ` X ) >. ) |
| 25 |
13 24
|
syl |
|- ( ph -> X = <. ( 1st ` X ) , ( 2nd ` X ) >. ) |
| 26 |
|
1st2nd2 |
|- ( Y e. ( ( Base ` C ) X. ( Base ` D ) ) -> Y = <. ( 1st ` Y ) , ( 2nd ` Y ) >. ) |
| 27 |
18 26
|
syl |
|- ( ph -> Y = <. ( 1st ` Y ) , ( 2nd ` Y ) >. ) |
| 28 |
25 27
|
oveq12d |
|- ( ph -> ( X P Y ) = ( <. ( 1st ` X ) , ( 2nd ` X ) >. P <. ( 1st ` Y ) , ( 2nd ` Y ) >. ) ) |
| 29 |
25 27
|
oveq12d |
|- ( ph -> ( X H Y ) = ( <. ( 1st ` X ) , ( 2nd ` X ) >. H <. ( 1st ` Y ) , ( 2nd ` Y ) >. ) ) |
| 30 |
1 2 6 7
|
swapf1a |
|- ( ph -> ( O ` X ) = <. ( 2nd ` X ) , ( 1st ` X ) >. ) |
| 31 |
1 2 6 8
|
swapf1a |
|- ( ph -> ( O ` Y ) = <. ( 2nd ` Y ) , ( 1st ` Y ) >. ) |
| 32 |
30 31
|
oveq12d |
|- ( ph -> ( ( O ` X ) J ( O ` Y ) ) = ( <. ( 2nd ` X ) , ( 1st ` X ) >. J <. ( 2nd ` Y ) , ( 1st ` Y ) >. ) ) |
| 33 |
28 29 32
|
f1oeq123d |
|- ( ph -> ( ( X P Y ) : ( X H Y ) -1-1-onto-> ( ( O ` X ) J ( O ` Y ) ) <-> ( <. ( 1st ` X ) , ( 2nd ` X ) >. P <. ( 1st ` Y ) , ( 2nd ` Y ) >. ) : ( <. ( 1st ` X ) , ( 2nd ` X ) >. H <. ( 1st ` Y ) , ( 2nd ` Y ) >. ) -1-1-onto-> ( <. ( 2nd ` X ) , ( 1st ` X ) >. J <. ( 2nd ` Y ) , ( 1st ` Y ) >. ) ) ) |
| 34 |
23 33
|
mpbird |
|- ( ph -> ( X P Y ) : ( X H Y ) -1-1-onto-> ( ( O ` X ) J ( O ` Y ) ) ) |