| Step |
Hyp |
Ref |
Expression |
| 1 |
|
swapf1a.o |
|- ( ph -> ( C swapF D ) = <. O , P >. ) |
| 2 |
|
swapf1a.s |
|- S = ( C Xc. D ) |
| 3 |
|
swapf1a.b |
|- B = ( Base ` S ) |
| 4 |
|
swapf1a.x |
|- ( ph -> X e. B ) |
| 5 |
2 3 4
|
elxpcbasex1 |
|- ( ph -> C e. _V ) |
| 6 |
2 3 4
|
elxpcbasex2 |
|- ( ph -> D e. _V ) |
| 7 |
5 6 2 3 1
|
swapf1val |
|- ( ph -> O = ( x e. B |-> U. `' { x } ) ) |
| 8 |
|
simpr |
|- ( ( ph /\ x = X ) -> x = X ) |
| 9 |
8
|
sneqd |
|- ( ( ph /\ x = X ) -> { x } = { X } ) |
| 10 |
9
|
cnveqd |
|- ( ( ph /\ x = X ) -> `' { x } = `' { X } ) |
| 11 |
10
|
unieqd |
|- ( ( ph /\ x = X ) -> U. `' { x } = U. `' { X } ) |
| 12 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
| 13 |
|
eqid |
|- ( Base ` D ) = ( Base ` D ) |
| 14 |
2 12 13
|
xpcbas |
|- ( ( Base ` C ) X. ( Base ` D ) ) = ( Base ` S ) |
| 15 |
3 14
|
eqtr4i |
|- B = ( ( Base ` C ) X. ( Base ` D ) ) |
| 16 |
4 15
|
eleqtrdi |
|- ( ph -> X e. ( ( Base ` C ) X. ( Base ` D ) ) ) |
| 17 |
|
2nd1st |
|- ( X e. ( ( Base ` C ) X. ( Base ` D ) ) -> U. `' { X } = <. ( 2nd ` X ) , ( 1st ` X ) >. ) |
| 18 |
16 17
|
syl |
|- ( ph -> U. `' { X } = <. ( 2nd ` X ) , ( 1st ` X ) >. ) |
| 19 |
18
|
adantr |
|- ( ( ph /\ x = X ) -> U. `' { X } = <. ( 2nd ` X ) , ( 1st ` X ) >. ) |
| 20 |
11 19
|
eqtrd |
|- ( ( ph /\ x = X ) -> U. `' { x } = <. ( 2nd ` X ) , ( 1st ` X ) >. ) |
| 21 |
|
opex |
|- <. ( 2nd ` X ) , ( 1st ` X ) >. e. _V |
| 22 |
21
|
a1i |
|- ( ph -> <. ( 2nd ` X ) , ( 1st ` X ) >. e. _V ) |
| 23 |
7 20 4 22
|
fvmptd |
|- ( ph -> ( O ` X ) = <. ( 2nd ` X ) , ( 1st ` X ) >. ) |