Metamath Proof Explorer


Theorem swapf1a

Description: The object part of the swap functor swaps the objects. (Contributed by Zhi Wang, 7-Oct-2025)

Ref Expression
Hypotheses swapf1a.o
|- ( ph -> ( C swapF D ) = <. O , P >. )
swapf1a.s
|- S = ( C Xc. D )
swapf1a.b
|- B = ( Base ` S )
swapf1a.x
|- ( ph -> X e. B )
Assertion swapf1a
|- ( ph -> ( O ` X ) = <. ( 2nd ` X ) , ( 1st ` X ) >. )

Proof

Step Hyp Ref Expression
1 swapf1a.o
 |-  ( ph -> ( C swapF D ) = <. O , P >. )
2 swapf1a.s
 |-  S = ( C Xc. D )
3 swapf1a.b
 |-  B = ( Base ` S )
4 swapf1a.x
 |-  ( ph -> X e. B )
5 2 3 4 elxpcbasex1
 |-  ( ph -> C e. _V )
6 2 3 4 elxpcbasex2
 |-  ( ph -> D e. _V )
7 5 6 2 3 1 swapf1val
 |-  ( ph -> O = ( x e. B |-> U. `' { x } ) )
8 simpr
 |-  ( ( ph /\ x = X ) -> x = X )
9 8 sneqd
 |-  ( ( ph /\ x = X ) -> { x } = { X } )
10 9 cnveqd
 |-  ( ( ph /\ x = X ) -> `' { x } = `' { X } )
11 10 unieqd
 |-  ( ( ph /\ x = X ) -> U. `' { x } = U. `' { X } )
12 eqid
 |-  ( Base ` C ) = ( Base ` C )
13 eqid
 |-  ( Base ` D ) = ( Base ` D )
14 2 12 13 xpcbas
 |-  ( ( Base ` C ) X. ( Base ` D ) ) = ( Base ` S )
15 3 14 eqtr4i
 |-  B = ( ( Base ` C ) X. ( Base ` D ) )
16 4 15 eleqtrdi
 |-  ( ph -> X e. ( ( Base ` C ) X. ( Base ` D ) ) )
17 2nd1st
 |-  ( X e. ( ( Base ` C ) X. ( Base ` D ) ) -> U. `' { X } = <. ( 2nd ` X ) , ( 1st ` X ) >. )
18 16 17 syl
 |-  ( ph -> U. `' { X } = <. ( 2nd ` X ) , ( 1st ` X ) >. )
19 18 adantr
 |-  ( ( ph /\ x = X ) -> U. `' { X } = <. ( 2nd ` X ) , ( 1st ` X ) >. )
20 11 19 eqtrd
 |-  ( ( ph /\ x = X ) -> U. `' { x } = <. ( 2nd ` X ) , ( 1st ` X ) >. )
21 opex
 |-  <. ( 2nd ` X ) , ( 1st ` X ) >. e. _V
22 21 a1i
 |-  ( ph -> <. ( 2nd ` X ) , ( 1st ` X ) >. e. _V )
23 7 20 4 22 fvmptd
 |-  ( ph -> ( O ` X ) = <. ( 2nd ` X ) , ( 1st ` X ) >. )