| Step |
Hyp |
Ref |
Expression |
| 1 |
|
swapf1a.o |
⊢ ( 𝜑 → ( 𝐶 swapF 𝐷 ) = 〈 𝑂 , 𝑃 〉 ) |
| 2 |
|
swapf1a.s |
⊢ 𝑆 = ( 𝐶 ×c 𝐷 ) |
| 3 |
|
swapf1a.b |
⊢ 𝐵 = ( Base ‘ 𝑆 ) |
| 4 |
|
swapf1a.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 5 |
2 3 4
|
elxpcbasex1 |
⊢ ( 𝜑 → 𝐶 ∈ V ) |
| 6 |
2 3 4
|
elxpcbasex2 |
⊢ ( 𝜑 → 𝐷 ∈ V ) |
| 7 |
5 6 2 3 1
|
swapf1val |
⊢ ( 𝜑 → 𝑂 = ( 𝑥 ∈ 𝐵 ↦ ∪ ◡ { 𝑥 } ) ) |
| 8 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → 𝑥 = 𝑋 ) |
| 9 |
8
|
sneqd |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → { 𝑥 } = { 𝑋 } ) |
| 10 |
9
|
cnveqd |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → ◡ { 𝑥 } = ◡ { 𝑋 } ) |
| 11 |
10
|
unieqd |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → ∪ ◡ { 𝑥 } = ∪ ◡ { 𝑋 } ) |
| 12 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
| 13 |
|
eqid |
⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) |
| 14 |
2 12 13
|
xpcbas |
⊢ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) = ( Base ‘ 𝑆 ) |
| 15 |
3 14
|
eqtr4i |
⊢ 𝐵 = ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) |
| 16 |
4 15
|
eleqtrdi |
⊢ ( 𝜑 → 𝑋 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ) |
| 17 |
|
2nd1st |
⊢ ( 𝑋 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) → ∪ ◡ { 𝑋 } = 〈 ( 2nd ‘ 𝑋 ) , ( 1st ‘ 𝑋 ) 〉 ) |
| 18 |
16 17
|
syl |
⊢ ( 𝜑 → ∪ ◡ { 𝑋 } = 〈 ( 2nd ‘ 𝑋 ) , ( 1st ‘ 𝑋 ) 〉 ) |
| 19 |
18
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → ∪ ◡ { 𝑋 } = 〈 ( 2nd ‘ 𝑋 ) , ( 1st ‘ 𝑋 ) 〉 ) |
| 20 |
11 19
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → ∪ ◡ { 𝑥 } = 〈 ( 2nd ‘ 𝑋 ) , ( 1st ‘ 𝑋 ) 〉 ) |
| 21 |
|
opex |
⊢ 〈 ( 2nd ‘ 𝑋 ) , ( 1st ‘ 𝑋 ) 〉 ∈ V |
| 22 |
21
|
a1i |
⊢ ( 𝜑 → 〈 ( 2nd ‘ 𝑋 ) , ( 1st ‘ 𝑋 ) 〉 ∈ V ) |
| 23 |
7 20 4 22
|
fvmptd |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝑋 ) = 〈 ( 2nd ‘ 𝑋 ) , ( 1st ‘ 𝑋 ) 〉 ) |