Metamath Proof Explorer


Theorem swapf1val

Description: The object part of the swap functor. See also swapf1vala . (Contributed by Zhi Wang, 7-Oct-2025)

Ref Expression
Hypotheses swapfval.c ( 𝜑𝐶𝑈 )
swapfval.d ( 𝜑𝐷𝑉 )
swapf2fvala.s 𝑆 = ( 𝐶 ×c 𝐷 )
swapf2fvala.b 𝐵 = ( Base ‘ 𝑆 )
swapf1val.o ( 𝜑 → ( 𝐶 swapF 𝐷 ) = ⟨ 𝑂 , 𝑃 ⟩ )
Assertion swapf1val ( 𝜑𝑂 = ( 𝑥𝐵 { 𝑥 } ) )

Proof

Step Hyp Ref Expression
1 swapfval.c ( 𝜑𝐶𝑈 )
2 swapfval.d ( 𝜑𝐷𝑉 )
3 swapf2fvala.s 𝑆 = ( 𝐶 ×c 𝐷 )
4 swapf2fvala.b 𝐵 = ( Base ‘ 𝑆 )
5 swapf1val.o ( 𝜑 → ( 𝐶 swapF 𝐷 ) = ⟨ 𝑂 , 𝑃 ⟩ )
6 5 fveq2d ( 𝜑 → ( 1st ‘ ( 𝐶 swapF 𝐷 ) ) = ( 1st ‘ ⟨ 𝑂 , 𝑃 ⟩ ) )
7 1 2 3 4 swapf1vala ( 𝜑 → ( 1st ‘ ( 𝐶 swapF 𝐷 ) ) = ( 𝑥𝐵 { 𝑥 } ) )
8 1 2 swapfelvv ( 𝜑 → ( 𝐶 swapF 𝐷 ) ∈ ( V × V ) )
9 5 8 eqeltrrd ( 𝜑 → ⟨ 𝑂 , 𝑃 ⟩ ∈ ( V × V ) )
10 opelxp ( ⟨ 𝑂 , 𝑃 ⟩ ∈ ( V × V ) ↔ ( 𝑂 ∈ V ∧ 𝑃 ∈ V ) )
11 10 biimpi ( ⟨ 𝑂 , 𝑃 ⟩ ∈ ( V × V ) → ( 𝑂 ∈ V ∧ 𝑃 ∈ V ) )
12 op1stg ( ( 𝑂 ∈ V ∧ 𝑃 ∈ V ) → ( 1st ‘ ⟨ 𝑂 , 𝑃 ⟩ ) = 𝑂 )
13 9 11 12 3syl ( 𝜑 → ( 1st ‘ ⟨ 𝑂 , 𝑃 ⟩ ) = 𝑂 )
14 6 7 13 3eqtr3rd ( 𝜑𝑂 = ( 𝑥𝐵 { 𝑥 } ) )