| Step |
Hyp |
Ref |
Expression |
| 1 |
|
swapfval.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑈 ) |
| 2 |
|
swapfval.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑉 ) |
| 3 |
|
swapf2fvala.s |
⊢ 𝑆 = ( 𝐶 ×c 𝐷 ) |
| 4 |
|
swapf2fvala.b |
⊢ 𝐵 = ( Base ‘ 𝑆 ) |
| 5 |
|
swapf1val.o |
⊢ ( 𝜑 → ( 𝐶 swapF 𝐷 ) = 〈 𝑂 , 𝑃 〉 ) |
| 6 |
5
|
fveq2d |
⊢ ( 𝜑 → ( 1st ‘ ( 𝐶 swapF 𝐷 ) ) = ( 1st ‘ 〈 𝑂 , 𝑃 〉 ) ) |
| 7 |
1 2 3 4
|
swapf1vala |
⊢ ( 𝜑 → ( 1st ‘ ( 𝐶 swapF 𝐷 ) ) = ( 𝑥 ∈ 𝐵 ↦ ∪ ◡ { 𝑥 } ) ) |
| 8 |
1 2
|
swapfelvv |
⊢ ( 𝜑 → ( 𝐶 swapF 𝐷 ) ∈ ( V × V ) ) |
| 9 |
5 8
|
eqeltrrd |
⊢ ( 𝜑 → 〈 𝑂 , 𝑃 〉 ∈ ( V × V ) ) |
| 10 |
|
opelxp |
⊢ ( 〈 𝑂 , 𝑃 〉 ∈ ( V × V ) ↔ ( 𝑂 ∈ V ∧ 𝑃 ∈ V ) ) |
| 11 |
10
|
biimpi |
⊢ ( 〈 𝑂 , 𝑃 〉 ∈ ( V × V ) → ( 𝑂 ∈ V ∧ 𝑃 ∈ V ) ) |
| 12 |
|
op1stg |
⊢ ( ( 𝑂 ∈ V ∧ 𝑃 ∈ V ) → ( 1st ‘ 〈 𝑂 , 𝑃 〉 ) = 𝑂 ) |
| 13 |
9 11 12
|
3syl |
⊢ ( 𝜑 → ( 1st ‘ 〈 𝑂 , 𝑃 〉 ) = 𝑂 ) |
| 14 |
6 7 13
|
3eqtr3rd |
⊢ ( 𝜑 → 𝑂 = ( 𝑥 ∈ 𝐵 ↦ ∪ ◡ { 𝑥 } ) ) |