Metamath Proof Explorer


Theorem swapf1val

Description: The object part of the swap functor. See also swapf1vala . (Contributed by Zhi Wang, 7-Oct-2025)

Ref Expression
Hypotheses swapfval.c φ C U
swapfval.d φ D V
swapf2fvala.s S = C × c D
swapf2fvala.b B = Base S
swapf1val.o No typesetting found for |- ( ph -> ( C swapF D ) = <. O , P >. ) with typecode |-
Assertion swapf1val φ O = x B x -1

Proof

Step Hyp Ref Expression
1 swapfval.c φ C U
2 swapfval.d φ D V
3 swapf2fvala.s S = C × c D
4 swapf2fvala.b B = Base S
5 swapf1val.o Could not format ( ph -> ( C swapF D ) = <. O , P >. ) : No typesetting found for |- ( ph -> ( C swapF D ) = <. O , P >. ) with typecode |-
6 5 fveq2d Could not format ( ph -> ( 1st ` ( C swapF D ) ) = ( 1st ` <. O , P >. ) ) : No typesetting found for |- ( ph -> ( 1st ` ( C swapF D ) ) = ( 1st ` <. O , P >. ) ) with typecode |-
7 1 2 3 4 swapf1vala Could not format ( ph -> ( 1st ` ( C swapF D ) ) = ( x e. B |-> U. `' { x } ) ) : No typesetting found for |- ( ph -> ( 1st ` ( C swapF D ) ) = ( x e. B |-> U. `' { x } ) ) with typecode |-
8 1 2 swapfelvv Could not format ( ph -> ( C swapF D ) e. ( _V X. _V ) ) : No typesetting found for |- ( ph -> ( C swapF D ) e. ( _V X. _V ) ) with typecode |-
9 5 8 eqeltrrd φ O P V × V
10 opelxp O P V × V O V P V
11 10 biimpi O P V × V O V P V
12 op1stg O V P V 1 st O P = O
13 9 11 12 3syl φ 1 st O P = O
14 6 7 13 3eqtr3rd φ O = x B x -1