Metamath Proof Explorer


Theorem swapf1val

Description: The object part of the swap functor. See also swapf1vala . (Contributed by Zhi Wang, 7-Oct-2025)

Ref Expression
Hypotheses swapfval.c
|- ( ph -> C e. U )
swapfval.d
|- ( ph -> D e. V )
swapf2fvala.s
|- S = ( C Xc. D )
swapf2fvala.b
|- B = ( Base ` S )
swapf1val.o
|- ( ph -> ( C swapF D ) = <. O , P >. )
Assertion swapf1val
|- ( ph -> O = ( x e. B |-> U. `' { x } ) )

Proof

Step Hyp Ref Expression
1 swapfval.c
 |-  ( ph -> C e. U )
2 swapfval.d
 |-  ( ph -> D e. V )
3 swapf2fvala.s
 |-  S = ( C Xc. D )
4 swapf2fvala.b
 |-  B = ( Base ` S )
5 swapf1val.o
 |-  ( ph -> ( C swapF D ) = <. O , P >. )
6 5 fveq2d
 |-  ( ph -> ( 1st ` ( C swapF D ) ) = ( 1st ` <. O , P >. ) )
7 1 2 3 4 swapf1vala
 |-  ( ph -> ( 1st ` ( C swapF D ) ) = ( x e. B |-> U. `' { x } ) )
8 1 2 swapfelvv
 |-  ( ph -> ( C swapF D ) e. ( _V X. _V ) )
9 5 8 eqeltrrd
 |-  ( ph -> <. O , P >. e. ( _V X. _V ) )
10 opelxp
 |-  ( <. O , P >. e. ( _V X. _V ) <-> ( O e. _V /\ P e. _V ) )
11 10 biimpi
 |-  ( <. O , P >. e. ( _V X. _V ) -> ( O e. _V /\ P e. _V ) )
12 op1stg
 |-  ( ( O e. _V /\ P e. _V ) -> ( 1st ` <. O , P >. ) = O )
13 9 11 12 3syl
 |-  ( ph -> ( 1st ` <. O , P >. ) = O )
14 6 7 13 3eqtr3rd
 |-  ( ph -> O = ( x e. B |-> U. `' { x } ) )