Metamath Proof Explorer


Theorem swapf2fn

Description: The morphism part of the swap functor is a function on the Cartesian square of the base set. (Contributed by Zhi Wang, 7-Oct-2025)

Ref Expression
Hypotheses swapfval.c
|- ( ph -> C e. U )
swapfval.d
|- ( ph -> D e. V )
swapf2fvala.s
|- S = ( C Xc. D )
swapf2fvala.b
|- B = ( Base ` S )
swapf1val.o
|- ( ph -> ( C swapF D ) = <. O , P >. )
Assertion swapf2fn
|- ( ph -> P Fn ( B X. B ) )

Proof

Step Hyp Ref Expression
1 swapfval.c
 |-  ( ph -> C e. U )
2 swapfval.d
 |-  ( ph -> D e. V )
3 swapf2fvala.s
 |-  S = ( C Xc. D )
4 swapf2fvala.b
 |-  B = ( Base ` S )
5 swapf1val.o
 |-  ( ph -> ( C swapF D ) = <. O , P >. )
6 eqid
 |-  ( u e. B , v e. B |-> ( f e. ( u ( Hom ` S ) v ) |-> U. `' { f } ) ) = ( u e. B , v e. B |-> ( f e. ( u ( Hom ` S ) v ) |-> U. `' { f } ) )
7 ovex
 |-  ( u ( Hom ` S ) v ) e. _V
8 7 mptex
 |-  ( f e. ( u ( Hom ` S ) v ) |-> U. `' { f } ) e. _V
9 6 8 fnmpoi
 |-  ( u e. B , v e. B |-> ( f e. ( u ( Hom ` S ) v ) |-> U. `' { f } ) ) Fn ( B X. B )
10 eqidd
 |-  ( ph -> ( Hom ` S ) = ( Hom ` S ) )
11 1 2 3 4 10 5 swapf2fval
 |-  ( ph -> P = ( u e. B , v e. B |-> ( f e. ( u ( Hom ` S ) v ) |-> U. `' { f } ) ) )
12 11 fneq1d
 |-  ( ph -> ( P Fn ( B X. B ) <-> ( u e. B , v e. B |-> ( f e. ( u ( Hom ` S ) v ) |-> U. `' { f } ) ) Fn ( B X. B ) ) )
13 9 12 mpbiri
 |-  ( ph -> P Fn ( B X. B ) )