| Step |
Hyp |
Ref |
Expression |
| 1 |
|
swapfval.c |
|- ( ph -> C e. U ) |
| 2 |
|
swapfval.d |
|- ( ph -> D e. V ) |
| 3 |
|
swapf2fvala.s |
|- S = ( C Xc. D ) |
| 4 |
|
swapf2fvala.b |
|- B = ( Base ` S ) |
| 5 |
|
swapf1val.o |
|- ( ph -> ( C swapF D ) = <. O , P >. ) |
| 6 |
|
eqid |
|- ( u e. B , v e. B |-> ( f e. ( u ( Hom ` S ) v ) |-> U. `' { f } ) ) = ( u e. B , v e. B |-> ( f e. ( u ( Hom ` S ) v ) |-> U. `' { f } ) ) |
| 7 |
|
ovex |
|- ( u ( Hom ` S ) v ) e. _V |
| 8 |
7
|
mptex |
|- ( f e. ( u ( Hom ` S ) v ) |-> U. `' { f } ) e. _V |
| 9 |
6 8
|
fnmpoi |
|- ( u e. B , v e. B |-> ( f e. ( u ( Hom ` S ) v ) |-> U. `' { f } ) ) Fn ( B X. B ) |
| 10 |
|
eqidd |
|- ( ph -> ( Hom ` S ) = ( Hom ` S ) ) |
| 11 |
1 2 3 4 10 5
|
swapf2fval |
|- ( ph -> P = ( u e. B , v e. B |-> ( f e. ( u ( Hom ` S ) v ) |-> U. `' { f } ) ) ) |
| 12 |
11
|
fneq1d |
|- ( ph -> ( P Fn ( B X. B ) <-> ( u e. B , v e. B |-> ( f e. ( u ( Hom ` S ) v ) |-> U. `' { f } ) ) Fn ( B X. B ) ) ) |
| 13 |
9 12
|
mpbiri |
|- ( ph -> P Fn ( B X. B ) ) |