Metamath Proof Explorer


Theorem swapf1f1o

Description: The object part of the swap functor is a bijection between base sets. (Contributed by Zhi Wang, 8-Oct-2025)

Ref Expression
Hypotheses swapf1f1o.o ( 𝜑 → ( 𝐶 swapF 𝐷 ) = ⟨ 𝑂 , 𝑃 ⟩ )
swapf1f1o.s 𝑆 = ( 𝐶 ×c 𝐷 )
swapf1f1o.t 𝑇 = ( 𝐷 ×c 𝐶 )
swapf1f1o.c ( 𝜑𝐶𝑈 )
swapf1f1o.d ( 𝜑𝐷𝑉 )
swapf1f1o.b 𝐵 = ( Base ‘ 𝑆 )
swapf1f1o.a 𝐴 = ( Base ‘ 𝑇 )
Assertion swapf1f1o ( 𝜑𝑂 : 𝐵1-1-onto𝐴 )

Proof

Step Hyp Ref Expression
1 swapf1f1o.o ( 𝜑 → ( 𝐶 swapF 𝐷 ) = ⟨ 𝑂 , 𝑃 ⟩ )
2 swapf1f1o.s 𝑆 = ( 𝐶 ×c 𝐷 )
3 swapf1f1o.t 𝑇 = ( 𝐷 ×c 𝐶 )
4 swapf1f1o.c ( 𝜑𝐶𝑈 )
5 swapf1f1o.d ( 𝜑𝐷𝑉 )
6 swapf1f1o.b 𝐵 = ( Base ‘ 𝑆 )
7 swapf1f1o.a 𝐴 = ( Base ‘ 𝑇 )
8 eqid ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 )
9 eqid ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 )
10 2 8 9 xpcbas ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) = ( Base ‘ 𝑆 )
11 6 10 eqtr4i 𝐵 = ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) )
12 11 mpteq1i ( 𝑥𝐵 { 𝑥 } ) = ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ↦ { 𝑥 } )
13 12 xpcomf1o ( 𝑥𝐵 { 𝑥 } ) : ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) –1-1-onto→ ( ( Base ‘ 𝐷 ) × ( Base ‘ 𝐶 ) )
14 4 5 2 6 1 swapf1val ( 𝜑𝑂 = ( 𝑥𝐵 { 𝑥 } ) )
15 11 a1i ( 𝜑𝐵 = ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) )
16 3 9 8 xpcbas ( ( Base ‘ 𝐷 ) × ( Base ‘ 𝐶 ) ) = ( Base ‘ 𝑇 )
17 7 16 eqtr4i 𝐴 = ( ( Base ‘ 𝐷 ) × ( Base ‘ 𝐶 ) )
18 17 a1i ( 𝜑𝐴 = ( ( Base ‘ 𝐷 ) × ( Base ‘ 𝐶 ) ) )
19 14 15 18 f1oeq123d ( 𝜑 → ( 𝑂 : 𝐵1-1-onto𝐴 ↔ ( 𝑥𝐵 { 𝑥 } ) : ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) –1-1-onto→ ( ( Base ‘ 𝐷 ) × ( Base ‘ 𝐶 ) ) ) )
20 13 19 mpbiri ( 𝜑𝑂 : 𝐵1-1-onto𝐴 )