| Step |
Hyp |
Ref |
Expression |
| 1 |
|
swapf1f1o.o |
⊢ ( 𝜑 → ( 𝐶 swapF 𝐷 ) = 〈 𝑂 , 𝑃 〉 ) |
| 2 |
|
swapf1f1o.s |
⊢ 𝑆 = ( 𝐶 ×c 𝐷 ) |
| 3 |
|
swapf1f1o.t |
⊢ 𝑇 = ( 𝐷 ×c 𝐶 ) |
| 4 |
|
swapf1f1o.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑈 ) |
| 5 |
|
swapf1f1o.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑉 ) |
| 6 |
|
swapf1f1o.b |
⊢ 𝐵 = ( Base ‘ 𝑆 ) |
| 7 |
|
swapf1f1o.a |
⊢ 𝐴 = ( Base ‘ 𝑇 ) |
| 8 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
| 9 |
|
eqid |
⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) |
| 10 |
2 8 9
|
xpcbas |
⊢ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) = ( Base ‘ 𝑆 ) |
| 11 |
6 10
|
eqtr4i |
⊢ 𝐵 = ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) |
| 12 |
11
|
mpteq1i |
⊢ ( 𝑥 ∈ 𝐵 ↦ ∪ ◡ { 𝑥 } ) = ( 𝑥 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ↦ ∪ ◡ { 𝑥 } ) |
| 13 |
12
|
xpcomf1o |
⊢ ( 𝑥 ∈ 𝐵 ↦ ∪ ◡ { 𝑥 } ) : ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) –1-1-onto→ ( ( Base ‘ 𝐷 ) × ( Base ‘ 𝐶 ) ) |
| 14 |
4 5 2 6 1
|
swapf1val |
⊢ ( 𝜑 → 𝑂 = ( 𝑥 ∈ 𝐵 ↦ ∪ ◡ { 𝑥 } ) ) |
| 15 |
11
|
a1i |
⊢ ( 𝜑 → 𝐵 = ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ) |
| 16 |
3 9 8
|
xpcbas |
⊢ ( ( Base ‘ 𝐷 ) × ( Base ‘ 𝐶 ) ) = ( Base ‘ 𝑇 ) |
| 17 |
7 16
|
eqtr4i |
⊢ 𝐴 = ( ( Base ‘ 𝐷 ) × ( Base ‘ 𝐶 ) ) |
| 18 |
17
|
a1i |
⊢ ( 𝜑 → 𝐴 = ( ( Base ‘ 𝐷 ) × ( Base ‘ 𝐶 ) ) ) |
| 19 |
14 15 18
|
f1oeq123d |
⊢ ( 𝜑 → ( 𝑂 : 𝐵 –1-1-onto→ 𝐴 ↔ ( 𝑥 ∈ 𝐵 ↦ ∪ ◡ { 𝑥 } ) : ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) –1-1-onto→ ( ( Base ‘ 𝐷 ) × ( Base ‘ 𝐶 ) ) ) ) |
| 20 |
13 19
|
mpbiri |
⊢ ( 𝜑 → 𝑂 : 𝐵 –1-1-onto→ 𝐴 ) |