Metamath Proof Explorer


Theorem swapf1f1o

Description: The object part of the swap functor is a bijection between base sets. (Contributed by Zhi Wang, 8-Oct-2025)

Ref Expression
Hypotheses swapf1f1o.o No typesetting found for |- ( ph -> ( C swapF D ) = <. O , P >. ) with typecode |-
swapf1f1o.s S = C × c D
swapf1f1o.t T = D × c C
swapf1f1o.c φ C U
swapf1f1o.d φ D V
swapf1f1o.b B = Base S
swapf1f1o.a A = Base T
Assertion swapf1f1o φ O : B 1-1 onto A

Proof

Step Hyp Ref Expression
1 swapf1f1o.o Could not format ( ph -> ( C swapF D ) = <. O , P >. ) : No typesetting found for |- ( ph -> ( C swapF D ) = <. O , P >. ) with typecode |-
2 swapf1f1o.s S = C × c D
3 swapf1f1o.t T = D × c C
4 swapf1f1o.c φ C U
5 swapf1f1o.d φ D V
6 swapf1f1o.b B = Base S
7 swapf1f1o.a A = Base T
8 eqid Base C = Base C
9 eqid Base D = Base D
10 2 8 9 xpcbas Base C × Base D = Base S
11 6 10 eqtr4i B = Base C × Base D
12 11 mpteq1i x B x -1 = x Base C × Base D x -1
13 12 xpcomf1o x B x -1 : Base C × Base D 1-1 onto Base D × Base C
14 4 5 2 6 1 swapf1val φ O = x B x -1
15 11 a1i φ B = Base C × Base D
16 3 9 8 xpcbas Base D × Base C = Base T
17 7 16 eqtr4i A = Base D × Base C
18 17 a1i φ A = Base D × Base C
19 14 15 18 f1oeq123d φ O : B 1-1 onto A x B x -1 : Base C × Base D 1-1 onto Base D × Base C
20 13 19 mpbiri φ O : B 1-1 onto A