Metamath Proof Explorer


Theorem swapf1

Description: The object part of the swap functor swaps the objects. (Contributed by Zhi Wang, 7-Oct-2025)

Ref Expression
Hypotheses swapf1.o No typesetting found for |- ( ph -> ( C swapF D ) = <. O , P >. ) with typecode |-
swapf1.x φ X Base C
swapf1.y φ Y Base D
Assertion swapf1 φ X O Y = Y X

Proof

Step Hyp Ref Expression
1 swapf1.o Could not format ( ph -> ( C swapF D ) = <. O , P >. ) : No typesetting found for |- ( ph -> ( C swapF D ) = <. O , P >. ) with typecode |-
2 swapf1.x φ X Base C
3 swapf1.y φ Y Base D
4 df-ov X O Y = O X Y
5 2 elfvexd φ C V
6 3 elfvexd φ D V
7 eqid C × c D = C × c D
8 eqid Base C = Base C
9 eqid Base D = Base D
10 7 8 9 xpcbas Base C × Base D = Base C × c D
11 5 6 7 10 1 swapf1val φ O = x Base C × Base D x -1
12 simpr φ x = X Y x = X Y
13 12 sneqd φ x = X Y x = X Y
14 13 cnveqd φ x = X Y x -1 = X Y -1
15 14 unieqd φ x = X Y x -1 = X Y -1
16 opswap X Y -1 = Y X
17 15 16 eqtrdi φ x = X Y x -1 = Y X
18 2 3 opelxpd φ X Y Base C × Base D
19 opex Y X V
20 19 a1i φ Y X V
21 11 17 18 20 fvmptd φ O X Y = Y X
22 4 21 eqtrid φ X O Y = Y X