| Step |
Hyp |
Ref |
Expression |
| 1 |
|
swapf1.o |
|- ( ph -> ( C swapF D ) = <. O , P >. ) |
| 2 |
|
swapf1.x |
|- ( ph -> X e. ( Base ` C ) ) |
| 3 |
|
swapf1.y |
|- ( ph -> Y e. ( Base ` D ) ) |
| 4 |
|
df-ov |
|- ( X O Y ) = ( O ` <. X , Y >. ) |
| 5 |
2
|
elfvexd |
|- ( ph -> C e. _V ) |
| 6 |
3
|
elfvexd |
|- ( ph -> D e. _V ) |
| 7 |
|
eqid |
|- ( C Xc. D ) = ( C Xc. D ) |
| 8 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
| 9 |
|
eqid |
|- ( Base ` D ) = ( Base ` D ) |
| 10 |
7 8 9
|
xpcbas |
|- ( ( Base ` C ) X. ( Base ` D ) ) = ( Base ` ( C Xc. D ) ) |
| 11 |
5 6 7 10 1
|
swapf1val |
|- ( ph -> O = ( x e. ( ( Base ` C ) X. ( Base ` D ) ) |-> U. `' { x } ) ) |
| 12 |
|
simpr |
|- ( ( ph /\ x = <. X , Y >. ) -> x = <. X , Y >. ) |
| 13 |
12
|
sneqd |
|- ( ( ph /\ x = <. X , Y >. ) -> { x } = { <. X , Y >. } ) |
| 14 |
13
|
cnveqd |
|- ( ( ph /\ x = <. X , Y >. ) -> `' { x } = `' { <. X , Y >. } ) |
| 15 |
14
|
unieqd |
|- ( ( ph /\ x = <. X , Y >. ) -> U. `' { x } = U. `' { <. X , Y >. } ) |
| 16 |
|
opswap |
|- U. `' { <. X , Y >. } = <. Y , X >. |
| 17 |
15 16
|
eqtrdi |
|- ( ( ph /\ x = <. X , Y >. ) -> U. `' { x } = <. Y , X >. ) |
| 18 |
2 3
|
opelxpd |
|- ( ph -> <. X , Y >. e. ( ( Base ` C ) X. ( Base ` D ) ) ) |
| 19 |
|
opex |
|- <. Y , X >. e. _V |
| 20 |
19
|
a1i |
|- ( ph -> <. Y , X >. e. _V ) |
| 21 |
11 17 18 20
|
fvmptd |
|- ( ph -> ( O ` <. X , Y >. ) = <. Y , X >. ) |
| 22 |
4 21
|
eqtrid |
|- ( ph -> ( X O Y ) = <. Y , X >. ) |