Metamath Proof Explorer


Definition df-swapf

Description: Define the swap functor from ( C Xc. D ) to ( D Xc. C ) by swapping all objects ( swapf1 ) and morphisms ( swapf2 ) .

Such functor is called a "swap functor" in https://arxiv.org/pdf/2302.07810 or a "twist functor" in https://arxiv.org/pdf/2508.01886 , the latter of which finds its counterpart as "twisting map" in https://arxiv.org/pdf/2411.04102 for tensor product of algebras. The "swap functor" or "twisting map" is often denoted as a small tau ta in literature. However, the term "twist functor" is defined differently in https://arxiv.org/pdf/1208.4046 and thus not adopted here.

tpos _I depends on more mathbox theorems, and thus are not adopted here. See dfswapf2 for an alternate definition.

(Contributed by Zhi Wang, 7-Oct-2025)

Ref Expression
Assertion df-swapf
|- swapF = ( c e. _V , d e. _V |-> [_ ( c Xc. d ) / s ]_ [_ ( Base ` s ) / b ]_ [_ ( Hom ` s ) / h ]_ <. ( x e. b |-> U. `' { x } ) , ( u e. b , v e. b |-> ( f e. ( u h v ) |-> U. `' { f } ) ) >. )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cswapf
 |-  swapF
1 vc
 |-  c
2 cvv
 |-  _V
3 vd
 |-  d
4 1 cv
 |-  c
5 cxpc
 |-  Xc.
6 3 cv
 |-  d
7 4 6 5 co
 |-  ( c Xc. d )
8 vs
 |-  s
9 cbs
 |-  Base
10 8 cv
 |-  s
11 10 9 cfv
 |-  ( Base ` s )
12 vb
 |-  b
13 chom
 |-  Hom
14 10 13 cfv
 |-  ( Hom ` s )
15 vh
 |-  h
16 vx
 |-  x
17 12 cv
 |-  b
18 16 cv
 |-  x
19 18 csn
 |-  { x }
20 19 ccnv
 |-  `' { x }
21 20 cuni
 |-  U. `' { x }
22 16 17 21 cmpt
 |-  ( x e. b |-> U. `' { x } )
23 vu
 |-  u
24 vv
 |-  v
25 vf
 |-  f
26 23 cv
 |-  u
27 15 cv
 |-  h
28 24 cv
 |-  v
29 26 28 27 co
 |-  ( u h v )
30 25 cv
 |-  f
31 30 csn
 |-  { f }
32 31 ccnv
 |-  `' { f }
33 32 cuni
 |-  U. `' { f }
34 25 29 33 cmpt
 |-  ( f e. ( u h v ) |-> U. `' { f } )
35 23 24 17 17 34 cmpo
 |-  ( u e. b , v e. b |-> ( f e. ( u h v ) |-> U. `' { f } ) )
36 22 35 cop
 |-  <. ( x e. b |-> U. `' { x } ) , ( u e. b , v e. b |-> ( f e. ( u h v ) |-> U. `' { f } ) ) >.
37 15 14 36 csb
 |-  [_ ( Hom ` s ) / h ]_ <. ( x e. b |-> U. `' { x } ) , ( u e. b , v e. b |-> ( f e. ( u h v ) |-> U. `' { f } ) ) >.
38 12 11 37 csb
 |-  [_ ( Base ` s ) / b ]_ [_ ( Hom ` s ) / h ]_ <. ( x e. b |-> U. `' { x } ) , ( u e. b , v e. b |-> ( f e. ( u h v ) |-> U. `' { f } ) ) >.
39 8 7 38 csb
 |-  [_ ( c Xc. d ) / s ]_ [_ ( Base ` s ) / b ]_ [_ ( Hom ` s ) / h ]_ <. ( x e. b |-> U. `' { x } ) , ( u e. b , v e. b |-> ( f e. ( u h v ) |-> U. `' { f } ) ) >.
40 1 3 2 2 39 cmpo
 |-  ( c e. _V , d e. _V |-> [_ ( c Xc. d ) / s ]_ [_ ( Base ` s ) / b ]_ [_ ( Hom ` s ) / h ]_ <. ( x e. b |-> U. `' { x } ) , ( u e. b , v e. b |-> ( f e. ( u h v ) |-> U. `' { f } ) ) >. )
41 0 40 wceq
 |-  swapF = ( c e. _V , d e. _V |-> [_ ( c Xc. d ) / s ]_ [_ ( Base ` s ) / b ]_ [_ ( Hom ` s ) / h ]_ <. ( x e. b |-> U. `' { x } ) , ( u e. b , v e. b |-> ( f e. ( u h v ) |-> U. `' { f } ) ) >. )