| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-swapf |
|- swapF = ( c e. _V , d e. _V |-> [_ ( c Xc. d ) / s ]_ [_ ( Base ` s ) / b ]_ [_ ( Hom ` s ) / h ]_ <. ( x e. b |-> U. `' { x } ) , ( u e. b , v e. b |-> ( f e. ( u h v ) |-> U. `' { f } ) ) >. ) |
| 2 |
|
fvex |
|- ( Base ` ( c Xc. d ) ) e. _V |
| 3 |
|
id |
|- ( b = ( Base ` ( c Xc. d ) ) -> b = ( Base ` ( c Xc. d ) ) ) |
| 4 |
|
eqid |
|- ( c Xc. d ) = ( c Xc. d ) |
| 5 |
|
eqid |
|- ( Base ` c ) = ( Base ` c ) |
| 6 |
|
eqid |
|- ( Base ` d ) = ( Base ` d ) |
| 7 |
4 5 6
|
xpcbas |
|- ( ( Base ` c ) X. ( Base ` d ) ) = ( Base ` ( c Xc. d ) ) |
| 8 |
3 7
|
eqtr4di |
|- ( b = ( Base ` ( c Xc. d ) ) -> b = ( ( Base ` c ) X. ( Base ` d ) ) ) |
| 9 |
8
|
mpteq1d |
|- ( b = ( Base ` ( c Xc. d ) ) -> ( x e. b |-> U. `' { x } ) = ( x e. ( ( Base ` c ) X. ( Base ` d ) ) |-> U. `' { x } ) ) |
| 10 |
|
eqidd |
|- ( b = ( Base ` ( c Xc. d ) ) -> ( f e. ( u h v ) |-> U. `' { f } ) = ( f e. ( u h v ) |-> U. `' { f } ) ) |
| 11 |
8 8 10
|
mpoeq123dv |
|- ( b = ( Base ` ( c Xc. d ) ) -> ( u e. b , v e. b |-> ( f e. ( u h v ) |-> U. `' { f } ) ) = ( u e. ( ( Base ` c ) X. ( Base ` d ) ) , v e. ( ( Base ` c ) X. ( Base ` d ) ) |-> ( f e. ( u h v ) |-> U. `' { f } ) ) ) |
| 12 |
9 11
|
opeq12d |
|- ( b = ( Base ` ( c Xc. d ) ) -> <. ( x e. b |-> U. `' { x } ) , ( u e. b , v e. b |-> ( f e. ( u h v ) |-> U. `' { f } ) ) >. = <. ( x e. ( ( Base ` c ) X. ( Base ` d ) ) |-> U. `' { x } ) , ( u e. ( ( Base ` c ) X. ( Base ` d ) ) , v e. ( ( Base ` c ) X. ( Base ` d ) ) |-> ( f e. ( u h v ) |-> U. `' { f } ) ) >. ) |
| 13 |
12
|
csbeq2dv |
|- ( b = ( Base ` ( c Xc. d ) ) -> [_ ( Hom ` ( c Xc. d ) ) / h ]_ <. ( x e. b |-> U. `' { x } ) , ( u e. b , v e. b |-> ( f e. ( u h v ) |-> U. `' { f } ) ) >. = [_ ( Hom ` ( c Xc. d ) ) / h ]_ <. ( x e. ( ( Base ` c ) X. ( Base ` d ) ) |-> U. `' { x } ) , ( u e. ( ( Base ` c ) X. ( Base ` d ) ) , v e. ( ( Base ` c ) X. ( Base ` d ) ) |-> ( f e. ( u h v ) |-> U. `' { f } ) ) >. ) |
| 14 |
2 13
|
csbie |
|- [_ ( Base ` ( c Xc. d ) ) / b ]_ [_ ( Hom ` ( c Xc. d ) ) / h ]_ <. ( x e. b |-> U. `' { x } ) , ( u e. b , v e. b |-> ( f e. ( u h v ) |-> U. `' { f } ) ) >. = [_ ( Hom ` ( c Xc. d ) ) / h ]_ <. ( x e. ( ( Base ` c ) X. ( Base ` d ) ) |-> U. `' { x } ) , ( u e. ( ( Base ` c ) X. ( Base ` d ) ) , v e. ( ( Base ` c ) X. ( Base ` d ) ) |-> ( f e. ( u h v ) |-> U. `' { f } ) ) >. |
| 15 |
|
ovex |
|- ( c Xc. d ) e. _V |
| 16 |
|
fveq2 |
|- ( s = ( c Xc. d ) -> ( Base ` s ) = ( Base ` ( c Xc. d ) ) ) |
| 17 |
|
fveq2 |
|- ( s = ( c Xc. d ) -> ( Hom ` s ) = ( Hom ` ( c Xc. d ) ) ) |
| 18 |
17
|
csbeq1d |
|- ( s = ( c Xc. d ) -> [_ ( Hom ` s ) / h ]_ <. ( x e. b |-> U. `' { x } ) , ( u e. b , v e. b |-> ( f e. ( u h v ) |-> U. `' { f } ) ) >. = [_ ( Hom ` ( c Xc. d ) ) / h ]_ <. ( x e. b |-> U. `' { x } ) , ( u e. b , v e. b |-> ( f e. ( u h v ) |-> U. `' { f } ) ) >. ) |
| 19 |
16 18
|
csbeq12dv |
|- ( s = ( c Xc. d ) -> [_ ( Base ` s ) / b ]_ [_ ( Hom ` s ) / h ]_ <. ( x e. b |-> U. `' { x } ) , ( u e. b , v e. b |-> ( f e. ( u h v ) |-> U. `' { f } ) ) >. = [_ ( Base ` ( c Xc. d ) ) / b ]_ [_ ( Hom ` ( c Xc. d ) ) / h ]_ <. ( x e. b |-> U. `' { x } ) , ( u e. b , v e. b |-> ( f e. ( u h v ) |-> U. `' { f } ) ) >. ) |
| 20 |
15 19
|
csbie |
|- [_ ( c Xc. d ) / s ]_ [_ ( Base ` s ) / b ]_ [_ ( Hom ` s ) / h ]_ <. ( x e. b |-> U. `' { x } ) , ( u e. b , v e. b |-> ( f e. ( u h v ) |-> U. `' { f } ) ) >. = [_ ( Base ` ( c Xc. d ) ) / b ]_ [_ ( Hom ` ( c Xc. d ) ) / h ]_ <. ( x e. b |-> U. `' { x } ) , ( u e. b , v e. b |-> ( f e. ( u h v ) |-> U. `' { f } ) ) >. |
| 21 |
17
|
csbeq1d |
|- ( s = ( c Xc. d ) -> [_ ( Hom ` s ) / h ]_ <. ( tpos _I |` b ) , ( u e. b , v e. b |-> ( tpos _I |` ( u h v ) ) ) >. = [_ ( Hom ` ( c Xc. d ) ) / h ]_ <. ( tpos _I |` b ) , ( u e. b , v e. b |-> ( tpos _I |` ( u h v ) ) ) >. ) |
| 22 |
16 21
|
csbeq12dv |
|- ( s = ( c Xc. d ) -> [_ ( Base ` s ) / b ]_ [_ ( Hom ` s ) / h ]_ <. ( tpos _I |` b ) , ( u e. b , v e. b |-> ( tpos _I |` ( u h v ) ) ) >. = [_ ( Base ` ( c Xc. d ) ) / b ]_ [_ ( Hom ` ( c Xc. d ) ) / h ]_ <. ( tpos _I |` b ) , ( u e. b , v e. b |-> ( tpos _I |` ( u h v ) ) ) >. ) |
| 23 |
15 22
|
csbie |
|- [_ ( c Xc. d ) / s ]_ [_ ( Base ` s ) / b ]_ [_ ( Hom ` s ) / h ]_ <. ( tpos _I |` b ) , ( u e. b , v e. b |-> ( tpos _I |` ( u h v ) ) ) >. = [_ ( Base ` ( c Xc. d ) ) / b ]_ [_ ( Hom ` ( c Xc. d ) ) / h ]_ <. ( tpos _I |` b ) , ( u e. b , v e. b |-> ( tpos _I |` ( u h v ) ) ) >. |
| 24 |
8
|
reseq2d |
|- ( b = ( Base ` ( c Xc. d ) ) -> ( tpos _I |` b ) = ( tpos _I |` ( ( Base ` c ) X. ( Base ` d ) ) ) ) |
| 25 |
|
eqidd |
|- ( b = ( Base ` ( c Xc. d ) ) -> ( tpos _I |` ( u h v ) ) = ( tpos _I |` ( u h v ) ) ) |
| 26 |
8 8 25
|
mpoeq123dv |
|- ( b = ( Base ` ( c Xc. d ) ) -> ( u e. b , v e. b |-> ( tpos _I |` ( u h v ) ) ) = ( u e. ( ( Base ` c ) X. ( Base ` d ) ) , v e. ( ( Base ` c ) X. ( Base ` d ) ) |-> ( tpos _I |` ( u h v ) ) ) ) |
| 27 |
24 26
|
opeq12d |
|- ( b = ( Base ` ( c Xc. d ) ) -> <. ( tpos _I |` b ) , ( u e. b , v e. b |-> ( tpos _I |` ( u h v ) ) ) >. = <. ( tpos _I |` ( ( Base ` c ) X. ( Base ` d ) ) ) , ( u e. ( ( Base ` c ) X. ( Base ` d ) ) , v e. ( ( Base ` c ) X. ( Base ` d ) ) |-> ( tpos _I |` ( u h v ) ) ) >. ) |
| 28 |
27
|
csbeq2dv |
|- ( b = ( Base ` ( c Xc. d ) ) -> [_ ( Hom ` ( c Xc. d ) ) / h ]_ <. ( tpos _I |` b ) , ( u e. b , v e. b |-> ( tpos _I |` ( u h v ) ) ) >. = [_ ( Hom ` ( c Xc. d ) ) / h ]_ <. ( tpos _I |` ( ( Base ` c ) X. ( Base ` d ) ) ) , ( u e. ( ( Base ` c ) X. ( Base ` d ) ) , v e. ( ( Base ` c ) X. ( Base ` d ) ) |-> ( tpos _I |` ( u h v ) ) ) >. ) |
| 29 |
2 28
|
csbie |
|- [_ ( Base ` ( c Xc. d ) ) / b ]_ [_ ( Hom ` ( c Xc. d ) ) / h ]_ <. ( tpos _I |` b ) , ( u e. b , v e. b |-> ( tpos _I |` ( u h v ) ) ) >. = [_ ( Hom ` ( c Xc. d ) ) / h ]_ <. ( tpos _I |` ( ( Base ` c ) X. ( Base ` d ) ) ) , ( u e. ( ( Base ` c ) X. ( Base ` d ) ) , v e. ( ( Base ` c ) X. ( Base ` d ) ) |-> ( tpos _I |` ( u h v ) ) ) >. |
| 30 |
|
eqid |
|- ( ( Base ` c ) X. ( Base ` d ) ) = ( ( Base ` c ) X. ( Base ` d ) ) |
| 31 |
30
|
tposideq2 |
|- ( tpos _I |` ( ( Base ` c ) X. ( Base ` d ) ) ) = ( x e. ( ( Base ` c ) X. ( Base ` d ) ) |-> U. `' { x } ) |
| 32 |
|
eqid |
|- ( ( ( 1st ` u ) ( Hom ` c ) ( 1st ` v ) ) X. ( ( 2nd ` u ) ( Hom ` d ) ( 2nd ` v ) ) ) = ( ( ( 1st ` u ) ( Hom ` c ) ( 1st ` v ) ) X. ( ( 2nd ` u ) ( Hom ` d ) ( 2nd ` v ) ) ) |
| 33 |
32
|
tposideq2 |
|- ( tpos _I |` ( ( ( 1st ` u ) ( Hom ` c ) ( 1st ` v ) ) X. ( ( 2nd ` u ) ( Hom ` d ) ( 2nd ` v ) ) ) ) = ( f e. ( ( ( 1st ` u ) ( Hom ` c ) ( 1st ` v ) ) X. ( ( 2nd ` u ) ( Hom ` d ) ( 2nd ` v ) ) ) |-> U. `' { f } ) |
| 34 |
|
eqid |
|- ( Hom ` c ) = ( Hom ` c ) |
| 35 |
|
eqid |
|- ( Hom ` d ) = ( Hom ` d ) |
| 36 |
|
eqid |
|- ( Hom ` ( c Xc. d ) ) = ( Hom ` ( c Xc. d ) ) |
| 37 |
|
simpl |
|- ( ( u e. ( ( Base ` c ) X. ( Base ` d ) ) /\ v e. ( ( Base ` c ) X. ( Base ` d ) ) ) -> u e. ( ( Base ` c ) X. ( Base ` d ) ) ) |
| 38 |
|
simpr |
|- ( ( u e. ( ( Base ` c ) X. ( Base ` d ) ) /\ v e. ( ( Base ` c ) X. ( Base ` d ) ) ) -> v e. ( ( Base ` c ) X. ( Base ` d ) ) ) |
| 39 |
4 7 34 35 36 37 38
|
xpchom |
|- ( ( u e. ( ( Base ` c ) X. ( Base ` d ) ) /\ v e. ( ( Base ` c ) X. ( Base ` d ) ) ) -> ( u ( Hom ` ( c Xc. d ) ) v ) = ( ( ( 1st ` u ) ( Hom ` c ) ( 1st ` v ) ) X. ( ( 2nd ` u ) ( Hom ` d ) ( 2nd ` v ) ) ) ) |
| 40 |
39
|
reseq2d |
|- ( ( u e. ( ( Base ` c ) X. ( Base ` d ) ) /\ v e. ( ( Base ` c ) X. ( Base ` d ) ) ) -> ( tpos _I |` ( u ( Hom ` ( c Xc. d ) ) v ) ) = ( tpos _I |` ( ( ( 1st ` u ) ( Hom ` c ) ( 1st ` v ) ) X. ( ( 2nd ` u ) ( Hom ` d ) ( 2nd ` v ) ) ) ) ) |
| 41 |
39
|
mpteq1d |
|- ( ( u e. ( ( Base ` c ) X. ( Base ` d ) ) /\ v e. ( ( Base ` c ) X. ( Base ` d ) ) ) -> ( f e. ( u ( Hom ` ( c Xc. d ) ) v ) |-> U. `' { f } ) = ( f e. ( ( ( 1st ` u ) ( Hom ` c ) ( 1st ` v ) ) X. ( ( 2nd ` u ) ( Hom ` d ) ( 2nd ` v ) ) ) |-> U. `' { f } ) ) |
| 42 |
33 40 41
|
3eqtr4a |
|- ( ( u e. ( ( Base ` c ) X. ( Base ` d ) ) /\ v e. ( ( Base ` c ) X. ( Base ` d ) ) ) -> ( tpos _I |` ( u ( Hom ` ( c Xc. d ) ) v ) ) = ( f e. ( u ( Hom ` ( c Xc. d ) ) v ) |-> U. `' { f } ) ) |
| 43 |
42
|
mpoeq3ia |
|- ( u e. ( ( Base ` c ) X. ( Base ` d ) ) , v e. ( ( Base ` c ) X. ( Base ` d ) ) |-> ( tpos _I |` ( u ( Hom ` ( c Xc. d ) ) v ) ) ) = ( u e. ( ( Base ` c ) X. ( Base ` d ) ) , v e. ( ( Base ` c ) X. ( Base ` d ) ) |-> ( f e. ( u ( Hom ` ( c Xc. d ) ) v ) |-> U. `' { f } ) ) |
| 44 |
31 43
|
opeq12i |
|- <. ( tpos _I |` ( ( Base ` c ) X. ( Base ` d ) ) ) , ( u e. ( ( Base ` c ) X. ( Base ` d ) ) , v e. ( ( Base ` c ) X. ( Base ` d ) ) |-> ( tpos _I |` ( u ( Hom ` ( c Xc. d ) ) v ) ) ) >. = <. ( x e. ( ( Base ` c ) X. ( Base ` d ) ) |-> U. `' { x } ) , ( u e. ( ( Base ` c ) X. ( Base ` d ) ) , v e. ( ( Base ` c ) X. ( Base ` d ) ) |-> ( f e. ( u ( Hom ` ( c Xc. d ) ) v ) |-> U. `' { f } ) ) >. |
| 45 |
|
fvex |
|- ( Hom ` ( c Xc. d ) ) e. _V |
| 46 |
|
oveq |
|- ( h = ( Hom ` ( c Xc. d ) ) -> ( u h v ) = ( u ( Hom ` ( c Xc. d ) ) v ) ) |
| 47 |
46
|
reseq2d |
|- ( h = ( Hom ` ( c Xc. d ) ) -> ( tpos _I |` ( u h v ) ) = ( tpos _I |` ( u ( Hom ` ( c Xc. d ) ) v ) ) ) |
| 48 |
47
|
mpoeq3dv |
|- ( h = ( Hom ` ( c Xc. d ) ) -> ( u e. ( ( Base ` c ) X. ( Base ` d ) ) , v e. ( ( Base ` c ) X. ( Base ` d ) ) |-> ( tpos _I |` ( u h v ) ) ) = ( u e. ( ( Base ` c ) X. ( Base ` d ) ) , v e. ( ( Base ` c ) X. ( Base ` d ) ) |-> ( tpos _I |` ( u ( Hom ` ( c Xc. d ) ) v ) ) ) ) |
| 49 |
48
|
opeq2d |
|- ( h = ( Hom ` ( c Xc. d ) ) -> <. ( tpos _I |` ( ( Base ` c ) X. ( Base ` d ) ) ) , ( u e. ( ( Base ` c ) X. ( Base ` d ) ) , v e. ( ( Base ` c ) X. ( Base ` d ) ) |-> ( tpos _I |` ( u h v ) ) ) >. = <. ( tpos _I |` ( ( Base ` c ) X. ( Base ` d ) ) ) , ( u e. ( ( Base ` c ) X. ( Base ` d ) ) , v e. ( ( Base ` c ) X. ( Base ` d ) ) |-> ( tpos _I |` ( u ( Hom ` ( c Xc. d ) ) v ) ) ) >. ) |
| 50 |
45 49
|
csbie |
|- [_ ( Hom ` ( c Xc. d ) ) / h ]_ <. ( tpos _I |` ( ( Base ` c ) X. ( Base ` d ) ) ) , ( u e. ( ( Base ` c ) X. ( Base ` d ) ) , v e. ( ( Base ` c ) X. ( Base ` d ) ) |-> ( tpos _I |` ( u h v ) ) ) >. = <. ( tpos _I |` ( ( Base ` c ) X. ( Base ` d ) ) ) , ( u e. ( ( Base ` c ) X. ( Base ` d ) ) , v e. ( ( Base ` c ) X. ( Base ` d ) ) |-> ( tpos _I |` ( u ( Hom ` ( c Xc. d ) ) v ) ) ) >. |
| 51 |
46
|
mpteq1d |
|- ( h = ( Hom ` ( c Xc. d ) ) -> ( f e. ( u h v ) |-> U. `' { f } ) = ( f e. ( u ( Hom ` ( c Xc. d ) ) v ) |-> U. `' { f } ) ) |
| 52 |
51
|
mpoeq3dv |
|- ( h = ( Hom ` ( c Xc. d ) ) -> ( u e. ( ( Base ` c ) X. ( Base ` d ) ) , v e. ( ( Base ` c ) X. ( Base ` d ) ) |-> ( f e. ( u h v ) |-> U. `' { f } ) ) = ( u e. ( ( Base ` c ) X. ( Base ` d ) ) , v e. ( ( Base ` c ) X. ( Base ` d ) ) |-> ( f e. ( u ( Hom ` ( c Xc. d ) ) v ) |-> U. `' { f } ) ) ) |
| 53 |
52
|
opeq2d |
|- ( h = ( Hom ` ( c Xc. d ) ) -> <. ( x e. ( ( Base ` c ) X. ( Base ` d ) ) |-> U. `' { x } ) , ( u e. ( ( Base ` c ) X. ( Base ` d ) ) , v e. ( ( Base ` c ) X. ( Base ` d ) ) |-> ( f e. ( u h v ) |-> U. `' { f } ) ) >. = <. ( x e. ( ( Base ` c ) X. ( Base ` d ) ) |-> U. `' { x } ) , ( u e. ( ( Base ` c ) X. ( Base ` d ) ) , v e. ( ( Base ` c ) X. ( Base ` d ) ) |-> ( f e. ( u ( Hom ` ( c Xc. d ) ) v ) |-> U. `' { f } ) ) >. ) |
| 54 |
45 53
|
csbie |
|- [_ ( Hom ` ( c Xc. d ) ) / h ]_ <. ( x e. ( ( Base ` c ) X. ( Base ` d ) ) |-> U. `' { x } ) , ( u e. ( ( Base ` c ) X. ( Base ` d ) ) , v e. ( ( Base ` c ) X. ( Base ` d ) ) |-> ( f e. ( u h v ) |-> U. `' { f } ) ) >. = <. ( x e. ( ( Base ` c ) X. ( Base ` d ) ) |-> U. `' { x } ) , ( u e. ( ( Base ` c ) X. ( Base ` d ) ) , v e. ( ( Base ` c ) X. ( Base ` d ) ) |-> ( f e. ( u ( Hom ` ( c Xc. d ) ) v ) |-> U. `' { f } ) ) >. |
| 55 |
44 50 54
|
3eqtr4i |
|- [_ ( Hom ` ( c Xc. d ) ) / h ]_ <. ( tpos _I |` ( ( Base ` c ) X. ( Base ` d ) ) ) , ( u e. ( ( Base ` c ) X. ( Base ` d ) ) , v e. ( ( Base ` c ) X. ( Base ` d ) ) |-> ( tpos _I |` ( u h v ) ) ) >. = [_ ( Hom ` ( c Xc. d ) ) / h ]_ <. ( x e. ( ( Base ` c ) X. ( Base ` d ) ) |-> U. `' { x } ) , ( u e. ( ( Base ` c ) X. ( Base ` d ) ) , v e. ( ( Base ` c ) X. ( Base ` d ) ) |-> ( f e. ( u h v ) |-> U. `' { f } ) ) >. |
| 56 |
23 29 55
|
3eqtri |
|- [_ ( c Xc. d ) / s ]_ [_ ( Base ` s ) / b ]_ [_ ( Hom ` s ) / h ]_ <. ( tpos _I |` b ) , ( u e. b , v e. b |-> ( tpos _I |` ( u h v ) ) ) >. = [_ ( Hom ` ( c Xc. d ) ) / h ]_ <. ( x e. ( ( Base ` c ) X. ( Base ` d ) ) |-> U. `' { x } ) , ( u e. ( ( Base ` c ) X. ( Base ` d ) ) , v e. ( ( Base ` c ) X. ( Base ` d ) ) |-> ( f e. ( u h v ) |-> U. `' { f } ) ) >. |
| 57 |
14 20 56
|
3eqtr4ri |
|- [_ ( c Xc. d ) / s ]_ [_ ( Base ` s ) / b ]_ [_ ( Hom ` s ) / h ]_ <. ( tpos _I |` b ) , ( u e. b , v e. b |-> ( tpos _I |` ( u h v ) ) ) >. = [_ ( c Xc. d ) / s ]_ [_ ( Base ` s ) / b ]_ [_ ( Hom ` s ) / h ]_ <. ( x e. b |-> U. `' { x } ) , ( u e. b , v e. b |-> ( f e. ( u h v ) |-> U. `' { f } ) ) >. |
| 58 |
57
|
a1i |
|- ( ( c e. _V /\ d e. _V ) -> [_ ( c Xc. d ) / s ]_ [_ ( Base ` s ) / b ]_ [_ ( Hom ` s ) / h ]_ <. ( tpos _I |` b ) , ( u e. b , v e. b |-> ( tpos _I |` ( u h v ) ) ) >. = [_ ( c Xc. d ) / s ]_ [_ ( Base ` s ) / b ]_ [_ ( Hom ` s ) / h ]_ <. ( x e. b |-> U. `' { x } ) , ( u e. b , v e. b |-> ( f e. ( u h v ) |-> U. `' { f } ) ) >. ) |
| 59 |
58
|
mpoeq3ia |
|- ( c e. _V , d e. _V |-> [_ ( c Xc. d ) / s ]_ [_ ( Base ` s ) / b ]_ [_ ( Hom ` s ) / h ]_ <. ( tpos _I |` b ) , ( u e. b , v e. b |-> ( tpos _I |` ( u h v ) ) ) >. ) = ( c e. _V , d e. _V |-> [_ ( c Xc. d ) / s ]_ [_ ( Base ` s ) / b ]_ [_ ( Hom ` s ) / h ]_ <. ( x e. b |-> U. `' { x } ) , ( u e. b , v e. b |-> ( f e. ( u h v ) |-> U. `' { f } ) ) >. ) |
| 60 |
1 59
|
eqtr4i |
|- swapF = ( c e. _V , d e. _V |-> [_ ( c Xc. d ) / s ]_ [_ ( Base ` s ) / b ]_ [_ ( Hom ` s ) / h ]_ <. ( tpos _I |` b ) , ( u e. b , v e. b |-> ( tpos _I |` ( u h v ) ) ) >. ) |