Description: Two ways of expressing the swap function. (Contributed by Zhi Wang, 6-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | tposideq2.1 | |- R = ( A X. B ) |
|
| Assertion | tposideq2 | |- ( tpos _I |` R ) = ( x e. R |-> U. `' { x } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tposideq2.1 | |- R = ( A X. B ) |
|
| 2 | relxp | |- Rel ( A X. B ) |
|
| 3 | 1 | releqi | |- ( Rel R <-> Rel ( A X. B ) ) |
| 4 | 2 3 | mpbir | |- Rel R |
| 5 | tposideq | |- ( Rel R -> ( tpos _I |` R ) = ( x e. R |-> U. `' { x } ) ) |
|
| 6 | 4 5 | ax-mp | |- ( tpos _I |` R ) = ( x e. R |-> U. `' { x } ) |