Metamath Proof Explorer


Theorem tposideq2

Description: Two ways of expressing the swap function. (Contributed by Zhi Wang, 6-Oct-2025)

Ref Expression
Hypothesis tposideq2.1
|- R = ( A X. B )
Assertion tposideq2
|- ( tpos _I |` R ) = ( x e. R |-> U. `' { x } )

Proof

Step Hyp Ref Expression
1 tposideq2.1
 |-  R = ( A X. B )
2 relxp
 |-  Rel ( A X. B )
3 1 releqi
 |-  ( Rel R <-> Rel ( A X. B ) )
4 2 3 mpbir
 |-  Rel R
5 tposideq
 |-  ( Rel R -> ( tpos _I |` R ) = ( x e. R |-> U. `' { x } ) )
6 4 5 ax-mp
 |-  ( tpos _I |` R ) = ( x e. R |-> U. `' { x } )