| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tposres |
|- ( Rel R -> ( tpos _I |` R ) = tpos ( _I |` `' R ) ) |
| 2 |
|
relcnv |
|- Rel `' R |
| 3 |
|
fnresi |
|- ( _I |` `' R ) Fn `' R |
| 4 |
|
tposfn2 |
|- ( Rel `' R -> ( ( _I |` `' R ) Fn `' R -> tpos ( _I |` `' R ) Fn `' `' R ) ) |
| 5 |
2 3 4
|
mp2 |
|- tpos ( _I |` `' R ) Fn `' `' R |
| 6 |
|
dfrel2 |
|- ( Rel R <-> `' `' R = R ) |
| 7 |
6
|
biimpi |
|- ( Rel R -> `' `' R = R ) |
| 8 |
7
|
fneq2d |
|- ( Rel R -> ( tpos ( _I |` `' R ) Fn `' `' R <-> tpos ( _I |` `' R ) Fn R ) ) |
| 9 |
5 8
|
mpbii |
|- ( Rel R -> tpos ( _I |` `' R ) Fn R ) |
| 10 |
|
vsnex |
|- { x } e. _V |
| 11 |
10
|
cnvex |
|- `' { x } e. _V |
| 12 |
11
|
uniex |
|- U. `' { x } e. _V |
| 13 |
|
eqid |
|- ( x e. R |-> U. `' { x } ) = ( x e. R |-> U. `' { x } ) |
| 14 |
12 13
|
fnmpti |
|- ( x e. R |-> U. `' { x } ) Fn R |
| 15 |
14
|
a1i |
|- ( Rel R -> ( x e. R |-> U. `' { x } ) Fn R ) |
| 16 |
|
1st2nd |
|- ( ( Rel R /\ y e. R ) -> y = <. ( 1st ` y ) , ( 2nd ` y ) >. ) |
| 17 |
|
1st2ndb |
|- ( y e. ( _V X. _V ) <-> y = <. ( 1st ` y ) , ( 2nd ` y ) >. ) |
| 18 |
17
|
biimpri |
|- ( y = <. ( 1st ` y ) , ( 2nd ` y ) >. -> y e. ( _V X. _V ) ) |
| 19 |
|
2nd1st |
|- ( y e. ( _V X. _V ) -> U. `' { y } = <. ( 2nd ` y ) , ( 1st ` y ) >. ) |
| 20 |
16 18 19
|
3syl |
|- ( ( Rel R /\ y e. R ) -> U. `' { y } = <. ( 2nd ` y ) , ( 1st ` y ) >. ) |
| 21 |
|
sneq |
|- ( x = y -> { x } = { y } ) |
| 22 |
21
|
cnveqd |
|- ( x = y -> `' { x } = `' { y } ) |
| 23 |
22
|
unieqd |
|- ( x = y -> U. `' { x } = U. `' { y } ) |
| 24 |
23 13 12
|
fvmpt3i |
|- ( y e. R -> ( ( x e. R |-> U. `' { x } ) ` y ) = U. `' { y } ) |
| 25 |
24
|
adantl |
|- ( ( Rel R /\ y e. R ) -> ( ( x e. R |-> U. `' { x } ) ` y ) = U. `' { y } ) |
| 26 |
16
|
fveq2d |
|- ( ( Rel R /\ y e. R ) -> ( tpos ( _I |` `' R ) ` y ) = ( tpos ( _I |` `' R ) ` <. ( 1st ` y ) , ( 2nd ` y ) >. ) ) |
| 27 |
|
ovtpos |
|- ( ( 1st ` y ) tpos ( _I |` `' R ) ( 2nd ` y ) ) = ( ( 2nd ` y ) ( _I |` `' R ) ( 1st ` y ) ) |
| 28 |
|
df-ov |
|- ( ( 1st ` y ) tpos ( _I |` `' R ) ( 2nd ` y ) ) = ( tpos ( _I |` `' R ) ` <. ( 1st ` y ) , ( 2nd ` y ) >. ) |
| 29 |
|
df-ov |
|- ( ( 2nd ` y ) ( _I |` `' R ) ( 1st ` y ) ) = ( ( _I |` `' R ) ` <. ( 2nd ` y ) , ( 1st ` y ) >. ) |
| 30 |
27 28 29
|
3eqtr3i |
|- ( tpos ( _I |` `' R ) ` <. ( 1st ` y ) , ( 2nd ` y ) >. ) = ( ( _I |` `' R ) ` <. ( 2nd ` y ) , ( 1st ` y ) >. ) |
| 31 |
30
|
a1i |
|- ( ( Rel R /\ y e. R ) -> ( tpos ( _I |` `' R ) ` <. ( 1st ` y ) , ( 2nd ` y ) >. ) = ( ( _I |` `' R ) ` <. ( 2nd ` y ) , ( 1st ` y ) >. ) ) |
| 32 |
|
simpr |
|- ( ( Rel R /\ y e. R ) -> y e. R ) |
| 33 |
16 32
|
eqeltrrd |
|- ( ( Rel R /\ y e. R ) -> <. ( 1st ` y ) , ( 2nd ` y ) >. e. R ) |
| 34 |
|
fvex |
|- ( 2nd ` y ) e. _V |
| 35 |
|
fvex |
|- ( 1st ` y ) e. _V |
| 36 |
34 35
|
opelcnv |
|- ( <. ( 2nd ` y ) , ( 1st ` y ) >. e. `' R <-> <. ( 1st ` y ) , ( 2nd ` y ) >. e. R ) |
| 37 |
36
|
biimpri |
|- ( <. ( 1st ` y ) , ( 2nd ` y ) >. e. R -> <. ( 2nd ` y ) , ( 1st ` y ) >. e. `' R ) |
| 38 |
|
fvresi |
|- ( <. ( 2nd ` y ) , ( 1st ` y ) >. e. `' R -> ( ( _I |` `' R ) ` <. ( 2nd ` y ) , ( 1st ` y ) >. ) = <. ( 2nd ` y ) , ( 1st ` y ) >. ) |
| 39 |
33 37 38
|
3syl |
|- ( ( Rel R /\ y e. R ) -> ( ( _I |` `' R ) ` <. ( 2nd ` y ) , ( 1st ` y ) >. ) = <. ( 2nd ` y ) , ( 1st ` y ) >. ) |
| 40 |
26 31 39
|
3eqtrd |
|- ( ( Rel R /\ y e. R ) -> ( tpos ( _I |` `' R ) ` y ) = <. ( 2nd ` y ) , ( 1st ` y ) >. ) |
| 41 |
20 25 40
|
3eqtr4rd |
|- ( ( Rel R /\ y e. R ) -> ( tpos ( _I |` `' R ) ` y ) = ( ( x e. R |-> U. `' { x } ) ` y ) ) |
| 42 |
9 15 41
|
eqfnfvd |
|- ( Rel R -> tpos ( _I |` `' R ) = ( x e. R |-> U. `' { x } ) ) |
| 43 |
1 42
|
eqtrd |
|- ( Rel R -> ( tpos _I |` R ) = ( x e. R |-> U. `' { x } ) ) |