Metamath Proof Explorer


Theorem tposideq2

Description: Two ways of expressing the swap function. (Contributed by Zhi Wang, 6-Oct-2025)

Ref Expression
Hypothesis tposideq2.1 𝑅 = ( 𝐴 × 𝐵 )
Assertion tposideq2 ( tpos I ↾ 𝑅 ) = ( 𝑥𝑅 { 𝑥 } )

Proof

Step Hyp Ref Expression
1 tposideq2.1 𝑅 = ( 𝐴 × 𝐵 )
2 relxp Rel ( 𝐴 × 𝐵 )
3 1 releqi ( Rel 𝑅 ↔ Rel ( 𝐴 × 𝐵 ) )
4 2 3 mpbir Rel 𝑅
5 tposideq ( Rel 𝑅 → ( tpos I ↾ 𝑅 ) = ( 𝑥𝑅 { 𝑥 } ) )
6 4 5 ax-mp ( tpos I ↾ 𝑅 ) = ( 𝑥𝑅 { 𝑥 } )