Description: Two ways of expressing the swap function. (Contributed by Zhi Wang, 6-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | tposideq2.1 | ⊢ 𝑅 = ( 𝐴 × 𝐵 ) | |
| Assertion | tposideq2 | ⊢ ( tpos I ↾ 𝑅 ) = ( 𝑥 ∈ 𝑅 ↦ ∪ ◡ { 𝑥 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tposideq2.1 | ⊢ 𝑅 = ( 𝐴 × 𝐵 ) | |
| 2 | relxp | ⊢ Rel ( 𝐴 × 𝐵 ) | |
| 3 | 1 | releqi | ⊢ ( Rel 𝑅 ↔ Rel ( 𝐴 × 𝐵 ) ) |
| 4 | 2 3 | mpbir | ⊢ Rel 𝑅 |
| 5 | tposideq | ⊢ ( Rel 𝑅 → ( tpos I ↾ 𝑅 ) = ( 𝑥 ∈ 𝑅 ↦ ∪ ◡ { 𝑥 } ) ) | |
| 6 | 4 5 | ax-mp | ⊢ ( tpos I ↾ 𝑅 ) = ( 𝑥 ∈ 𝑅 ↦ ∪ ◡ { 𝑥 } ) |