Metamath Proof Explorer


Theorem dfswapf2

Description: Alternate definition of swapF ( df-swapf ). (Contributed by Zhi Wang, 9-Oct-2025)

Ref Expression
Assertion dfswapf2 swapF = ( 𝑐 ∈ V , 𝑑 ∈ V ↦ ( 𝑐 ×c 𝑑 ) / 𝑠 ( Base ‘ 𝑠 ) / 𝑏 ( Hom ‘ 𝑠 ) / ⟨ ( tpos I ↾ 𝑏 ) , ( 𝑢𝑏 , 𝑣𝑏 ↦ ( tpos I ↾ ( 𝑢 𝑣 ) ) ) ⟩ )

Proof

Step Hyp Ref Expression
1 df-swapf swapF = ( 𝑐 ∈ V , 𝑑 ∈ V ↦ ( 𝑐 ×c 𝑑 ) / 𝑠 ( Base ‘ 𝑠 ) / 𝑏 ( Hom ‘ 𝑠 ) / ⟨ ( 𝑥𝑏 { 𝑥 } ) , ( 𝑢𝑏 , 𝑣𝑏 ↦ ( 𝑓 ∈ ( 𝑢 𝑣 ) ↦ { 𝑓 } ) ) ⟩ )
2 fvex ( Base ‘ ( 𝑐 ×c 𝑑 ) ) ∈ V
3 id ( 𝑏 = ( Base ‘ ( 𝑐 ×c 𝑑 ) ) → 𝑏 = ( Base ‘ ( 𝑐 ×c 𝑑 ) ) )
4 eqid ( 𝑐 ×c 𝑑 ) = ( 𝑐 ×c 𝑑 )
5 eqid ( Base ‘ 𝑐 ) = ( Base ‘ 𝑐 )
6 eqid ( Base ‘ 𝑑 ) = ( Base ‘ 𝑑 )
7 4 5 6 xpcbas ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) = ( Base ‘ ( 𝑐 ×c 𝑑 ) )
8 3 7 eqtr4di ( 𝑏 = ( Base ‘ ( 𝑐 ×c 𝑑 ) ) → 𝑏 = ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) )
9 8 mpteq1d ( 𝑏 = ( Base ‘ ( 𝑐 ×c 𝑑 ) ) → ( 𝑥𝑏 { 𝑥 } ) = ( 𝑥 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ↦ { 𝑥 } ) )
10 eqidd ( 𝑏 = ( Base ‘ ( 𝑐 ×c 𝑑 ) ) → ( 𝑓 ∈ ( 𝑢 𝑣 ) ↦ { 𝑓 } ) = ( 𝑓 ∈ ( 𝑢 𝑣 ) ↦ { 𝑓 } ) )
11 8 8 10 mpoeq123dv ( 𝑏 = ( Base ‘ ( 𝑐 ×c 𝑑 ) ) → ( 𝑢𝑏 , 𝑣𝑏 ↦ ( 𝑓 ∈ ( 𝑢 𝑣 ) ↦ { 𝑓 } ) ) = ( 𝑢 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) , 𝑣 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ↦ ( 𝑓 ∈ ( 𝑢 𝑣 ) ↦ { 𝑓 } ) ) )
12 9 11 opeq12d ( 𝑏 = ( Base ‘ ( 𝑐 ×c 𝑑 ) ) → ⟨ ( 𝑥𝑏 { 𝑥 } ) , ( 𝑢𝑏 , 𝑣𝑏 ↦ ( 𝑓 ∈ ( 𝑢 𝑣 ) ↦ { 𝑓 } ) ) ⟩ = ⟨ ( 𝑥 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ↦ { 𝑥 } ) , ( 𝑢 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) , 𝑣 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ↦ ( 𝑓 ∈ ( 𝑢 𝑣 ) ↦ { 𝑓 } ) ) ⟩ )
13 12 csbeq2dv ( 𝑏 = ( Base ‘ ( 𝑐 ×c 𝑑 ) ) → ( Hom ‘ ( 𝑐 ×c 𝑑 ) ) / ⟨ ( 𝑥𝑏 { 𝑥 } ) , ( 𝑢𝑏 , 𝑣𝑏 ↦ ( 𝑓 ∈ ( 𝑢 𝑣 ) ↦ { 𝑓 } ) ) ⟩ = ( Hom ‘ ( 𝑐 ×c 𝑑 ) ) / ⟨ ( 𝑥 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ↦ { 𝑥 } ) , ( 𝑢 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) , 𝑣 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ↦ ( 𝑓 ∈ ( 𝑢 𝑣 ) ↦ { 𝑓 } ) ) ⟩ )
14 2 13 csbie ( Base ‘ ( 𝑐 ×c 𝑑 ) ) / 𝑏 ( Hom ‘ ( 𝑐 ×c 𝑑 ) ) / ⟨ ( 𝑥𝑏 { 𝑥 } ) , ( 𝑢𝑏 , 𝑣𝑏 ↦ ( 𝑓 ∈ ( 𝑢 𝑣 ) ↦ { 𝑓 } ) ) ⟩ = ( Hom ‘ ( 𝑐 ×c 𝑑 ) ) / ⟨ ( 𝑥 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ↦ { 𝑥 } ) , ( 𝑢 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) , 𝑣 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ↦ ( 𝑓 ∈ ( 𝑢 𝑣 ) ↦ { 𝑓 } ) ) ⟩
15 ovex ( 𝑐 ×c 𝑑 ) ∈ V
16 fveq2 ( 𝑠 = ( 𝑐 ×c 𝑑 ) → ( Base ‘ 𝑠 ) = ( Base ‘ ( 𝑐 ×c 𝑑 ) ) )
17 fveq2 ( 𝑠 = ( 𝑐 ×c 𝑑 ) → ( Hom ‘ 𝑠 ) = ( Hom ‘ ( 𝑐 ×c 𝑑 ) ) )
18 17 csbeq1d ( 𝑠 = ( 𝑐 ×c 𝑑 ) → ( Hom ‘ 𝑠 ) / ⟨ ( 𝑥𝑏 { 𝑥 } ) , ( 𝑢𝑏 , 𝑣𝑏 ↦ ( 𝑓 ∈ ( 𝑢 𝑣 ) ↦ { 𝑓 } ) ) ⟩ = ( Hom ‘ ( 𝑐 ×c 𝑑 ) ) / ⟨ ( 𝑥𝑏 { 𝑥 } ) , ( 𝑢𝑏 , 𝑣𝑏 ↦ ( 𝑓 ∈ ( 𝑢 𝑣 ) ↦ { 𝑓 } ) ) ⟩ )
19 16 18 csbeq12dv ( 𝑠 = ( 𝑐 ×c 𝑑 ) → ( Base ‘ 𝑠 ) / 𝑏 ( Hom ‘ 𝑠 ) / ⟨ ( 𝑥𝑏 { 𝑥 } ) , ( 𝑢𝑏 , 𝑣𝑏 ↦ ( 𝑓 ∈ ( 𝑢 𝑣 ) ↦ { 𝑓 } ) ) ⟩ = ( Base ‘ ( 𝑐 ×c 𝑑 ) ) / 𝑏 ( Hom ‘ ( 𝑐 ×c 𝑑 ) ) / ⟨ ( 𝑥𝑏 { 𝑥 } ) , ( 𝑢𝑏 , 𝑣𝑏 ↦ ( 𝑓 ∈ ( 𝑢 𝑣 ) ↦ { 𝑓 } ) ) ⟩ )
20 15 19 csbie ( 𝑐 ×c 𝑑 ) / 𝑠 ( Base ‘ 𝑠 ) / 𝑏 ( Hom ‘ 𝑠 ) / ⟨ ( 𝑥𝑏 { 𝑥 } ) , ( 𝑢𝑏 , 𝑣𝑏 ↦ ( 𝑓 ∈ ( 𝑢 𝑣 ) ↦ { 𝑓 } ) ) ⟩ = ( Base ‘ ( 𝑐 ×c 𝑑 ) ) / 𝑏 ( Hom ‘ ( 𝑐 ×c 𝑑 ) ) / ⟨ ( 𝑥𝑏 { 𝑥 } ) , ( 𝑢𝑏 , 𝑣𝑏 ↦ ( 𝑓 ∈ ( 𝑢 𝑣 ) ↦ { 𝑓 } ) ) ⟩
21 17 csbeq1d ( 𝑠 = ( 𝑐 ×c 𝑑 ) → ( Hom ‘ 𝑠 ) / ⟨ ( tpos I ↾ 𝑏 ) , ( 𝑢𝑏 , 𝑣𝑏 ↦ ( tpos I ↾ ( 𝑢 𝑣 ) ) ) ⟩ = ( Hom ‘ ( 𝑐 ×c 𝑑 ) ) / ⟨ ( tpos I ↾ 𝑏 ) , ( 𝑢𝑏 , 𝑣𝑏 ↦ ( tpos I ↾ ( 𝑢 𝑣 ) ) ) ⟩ )
22 16 21 csbeq12dv ( 𝑠 = ( 𝑐 ×c 𝑑 ) → ( Base ‘ 𝑠 ) / 𝑏 ( Hom ‘ 𝑠 ) / ⟨ ( tpos I ↾ 𝑏 ) , ( 𝑢𝑏 , 𝑣𝑏 ↦ ( tpos I ↾ ( 𝑢 𝑣 ) ) ) ⟩ = ( Base ‘ ( 𝑐 ×c 𝑑 ) ) / 𝑏 ( Hom ‘ ( 𝑐 ×c 𝑑 ) ) / ⟨ ( tpos I ↾ 𝑏 ) , ( 𝑢𝑏 , 𝑣𝑏 ↦ ( tpos I ↾ ( 𝑢 𝑣 ) ) ) ⟩ )
23 15 22 csbie ( 𝑐 ×c 𝑑 ) / 𝑠 ( Base ‘ 𝑠 ) / 𝑏 ( Hom ‘ 𝑠 ) / ⟨ ( tpos I ↾ 𝑏 ) , ( 𝑢𝑏 , 𝑣𝑏 ↦ ( tpos I ↾ ( 𝑢 𝑣 ) ) ) ⟩ = ( Base ‘ ( 𝑐 ×c 𝑑 ) ) / 𝑏 ( Hom ‘ ( 𝑐 ×c 𝑑 ) ) / ⟨ ( tpos I ↾ 𝑏 ) , ( 𝑢𝑏 , 𝑣𝑏 ↦ ( tpos I ↾ ( 𝑢 𝑣 ) ) ) ⟩
24 8 reseq2d ( 𝑏 = ( Base ‘ ( 𝑐 ×c 𝑑 ) ) → ( tpos I ↾ 𝑏 ) = ( tpos I ↾ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ) )
25 eqidd ( 𝑏 = ( Base ‘ ( 𝑐 ×c 𝑑 ) ) → ( tpos I ↾ ( 𝑢 𝑣 ) ) = ( tpos I ↾ ( 𝑢 𝑣 ) ) )
26 8 8 25 mpoeq123dv ( 𝑏 = ( Base ‘ ( 𝑐 ×c 𝑑 ) ) → ( 𝑢𝑏 , 𝑣𝑏 ↦ ( tpos I ↾ ( 𝑢 𝑣 ) ) ) = ( 𝑢 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) , 𝑣 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ↦ ( tpos I ↾ ( 𝑢 𝑣 ) ) ) )
27 24 26 opeq12d ( 𝑏 = ( Base ‘ ( 𝑐 ×c 𝑑 ) ) → ⟨ ( tpos I ↾ 𝑏 ) , ( 𝑢𝑏 , 𝑣𝑏 ↦ ( tpos I ↾ ( 𝑢 𝑣 ) ) ) ⟩ = ⟨ ( tpos I ↾ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ) , ( 𝑢 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) , 𝑣 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ↦ ( tpos I ↾ ( 𝑢 𝑣 ) ) ) ⟩ )
28 27 csbeq2dv ( 𝑏 = ( Base ‘ ( 𝑐 ×c 𝑑 ) ) → ( Hom ‘ ( 𝑐 ×c 𝑑 ) ) / ⟨ ( tpos I ↾ 𝑏 ) , ( 𝑢𝑏 , 𝑣𝑏 ↦ ( tpos I ↾ ( 𝑢 𝑣 ) ) ) ⟩ = ( Hom ‘ ( 𝑐 ×c 𝑑 ) ) / ⟨ ( tpos I ↾ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ) , ( 𝑢 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) , 𝑣 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ↦ ( tpos I ↾ ( 𝑢 𝑣 ) ) ) ⟩ )
29 2 28 csbie ( Base ‘ ( 𝑐 ×c 𝑑 ) ) / 𝑏 ( Hom ‘ ( 𝑐 ×c 𝑑 ) ) / ⟨ ( tpos I ↾ 𝑏 ) , ( 𝑢𝑏 , 𝑣𝑏 ↦ ( tpos I ↾ ( 𝑢 𝑣 ) ) ) ⟩ = ( Hom ‘ ( 𝑐 ×c 𝑑 ) ) / ⟨ ( tpos I ↾ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ) , ( 𝑢 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) , 𝑣 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ↦ ( tpos I ↾ ( 𝑢 𝑣 ) ) ) ⟩
30 eqid ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) = ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) )
31 30 tposideq2 ( tpos I ↾ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ) = ( 𝑥 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ↦ { 𝑥 } )
32 eqid ( ( ( 1st𝑢 ) ( Hom ‘ 𝑐 ) ( 1st𝑣 ) ) × ( ( 2nd𝑢 ) ( Hom ‘ 𝑑 ) ( 2nd𝑣 ) ) ) = ( ( ( 1st𝑢 ) ( Hom ‘ 𝑐 ) ( 1st𝑣 ) ) × ( ( 2nd𝑢 ) ( Hom ‘ 𝑑 ) ( 2nd𝑣 ) ) )
33 32 tposideq2 ( tpos I ↾ ( ( ( 1st𝑢 ) ( Hom ‘ 𝑐 ) ( 1st𝑣 ) ) × ( ( 2nd𝑢 ) ( Hom ‘ 𝑑 ) ( 2nd𝑣 ) ) ) ) = ( 𝑓 ∈ ( ( ( 1st𝑢 ) ( Hom ‘ 𝑐 ) ( 1st𝑣 ) ) × ( ( 2nd𝑢 ) ( Hom ‘ 𝑑 ) ( 2nd𝑣 ) ) ) ↦ { 𝑓 } )
34 eqid ( Hom ‘ 𝑐 ) = ( Hom ‘ 𝑐 )
35 eqid ( Hom ‘ 𝑑 ) = ( Hom ‘ 𝑑 )
36 eqid ( Hom ‘ ( 𝑐 ×c 𝑑 ) ) = ( Hom ‘ ( 𝑐 ×c 𝑑 ) )
37 simpl ( ( 𝑢 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ∧ 𝑣 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ) → 𝑢 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) )
38 simpr ( ( 𝑢 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ∧ 𝑣 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ) → 𝑣 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) )
39 4 7 34 35 36 37 38 xpchom ( ( 𝑢 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ∧ 𝑣 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ) → ( 𝑢 ( Hom ‘ ( 𝑐 ×c 𝑑 ) ) 𝑣 ) = ( ( ( 1st𝑢 ) ( Hom ‘ 𝑐 ) ( 1st𝑣 ) ) × ( ( 2nd𝑢 ) ( Hom ‘ 𝑑 ) ( 2nd𝑣 ) ) ) )
40 39 reseq2d ( ( 𝑢 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ∧ 𝑣 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ) → ( tpos I ↾ ( 𝑢 ( Hom ‘ ( 𝑐 ×c 𝑑 ) ) 𝑣 ) ) = ( tpos I ↾ ( ( ( 1st𝑢 ) ( Hom ‘ 𝑐 ) ( 1st𝑣 ) ) × ( ( 2nd𝑢 ) ( Hom ‘ 𝑑 ) ( 2nd𝑣 ) ) ) ) )
41 39 mpteq1d ( ( 𝑢 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ∧ 𝑣 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ) → ( 𝑓 ∈ ( 𝑢 ( Hom ‘ ( 𝑐 ×c 𝑑 ) ) 𝑣 ) ↦ { 𝑓 } ) = ( 𝑓 ∈ ( ( ( 1st𝑢 ) ( Hom ‘ 𝑐 ) ( 1st𝑣 ) ) × ( ( 2nd𝑢 ) ( Hom ‘ 𝑑 ) ( 2nd𝑣 ) ) ) ↦ { 𝑓 } ) )
42 33 40 41 3eqtr4a ( ( 𝑢 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ∧ 𝑣 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ) → ( tpos I ↾ ( 𝑢 ( Hom ‘ ( 𝑐 ×c 𝑑 ) ) 𝑣 ) ) = ( 𝑓 ∈ ( 𝑢 ( Hom ‘ ( 𝑐 ×c 𝑑 ) ) 𝑣 ) ↦ { 𝑓 } ) )
43 42 mpoeq3ia ( 𝑢 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) , 𝑣 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ↦ ( tpos I ↾ ( 𝑢 ( Hom ‘ ( 𝑐 ×c 𝑑 ) ) 𝑣 ) ) ) = ( 𝑢 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) , 𝑣 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ↦ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ ( 𝑐 ×c 𝑑 ) ) 𝑣 ) ↦ { 𝑓 } ) )
44 31 43 opeq12i ⟨ ( tpos I ↾ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ) , ( 𝑢 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) , 𝑣 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ↦ ( tpos I ↾ ( 𝑢 ( Hom ‘ ( 𝑐 ×c 𝑑 ) ) 𝑣 ) ) ) ⟩ = ⟨ ( 𝑥 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ↦ { 𝑥 } ) , ( 𝑢 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) , 𝑣 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ↦ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ ( 𝑐 ×c 𝑑 ) ) 𝑣 ) ↦ { 𝑓 } ) ) ⟩
45 fvex ( Hom ‘ ( 𝑐 ×c 𝑑 ) ) ∈ V
46 oveq ( = ( Hom ‘ ( 𝑐 ×c 𝑑 ) ) → ( 𝑢 𝑣 ) = ( 𝑢 ( Hom ‘ ( 𝑐 ×c 𝑑 ) ) 𝑣 ) )
47 46 reseq2d ( = ( Hom ‘ ( 𝑐 ×c 𝑑 ) ) → ( tpos I ↾ ( 𝑢 𝑣 ) ) = ( tpos I ↾ ( 𝑢 ( Hom ‘ ( 𝑐 ×c 𝑑 ) ) 𝑣 ) ) )
48 47 mpoeq3dv ( = ( Hom ‘ ( 𝑐 ×c 𝑑 ) ) → ( 𝑢 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) , 𝑣 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ↦ ( tpos I ↾ ( 𝑢 𝑣 ) ) ) = ( 𝑢 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) , 𝑣 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ↦ ( tpos I ↾ ( 𝑢 ( Hom ‘ ( 𝑐 ×c 𝑑 ) ) 𝑣 ) ) ) )
49 48 opeq2d ( = ( Hom ‘ ( 𝑐 ×c 𝑑 ) ) → ⟨ ( tpos I ↾ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ) , ( 𝑢 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) , 𝑣 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ↦ ( tpos I ↾ ( 𝑢 𝑣 ) ) ) ⟩ = ⟨ ( tpos I ↾ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ) , ( 𝑢 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) , 𝑣 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ↦ ( tpos I ↾ ( 𝑢 ( Hom ‘ ( 𝑐 ×c 𝑑 ) ) 𝑣 ) ) ) ⟩ )
50 45 49 csbie ( Hom ‘ ( 𝑐 ×c 𝑑 ) ) / ⟨ ( tpos I ↾ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ) , ( 𝑢 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) , 𝑣 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ↦ ( tpos I ↾ ( 𝑢 𝑣 ) ) ) ⟩ = ⟨ ( tpos I ↾ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ) , ( 𝑢 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) , 𝑣 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ↦ ( tpos I ↾ ( 𝑢 ( Hom ‘ ( 𝑐 ×c 𝑑 ) ) 𝑣 ) ) ) ⟩
51 46 mpteq1d ( = ( Hom ‘ ( 𝑐 ×c 𝑑 ) ) → ( 𝑓 ∈ ( 𝑢 𝑣 ) ↦ { 𝑓 } ) = ( 𝑓 ∈ ( 𝑢 ( Hom ‘ ( 𝑐 ×c 𝑑 ) ) 𝑣 ) ↦ { 𝑓 } ) )
52 51 mpoeq3dv ( = ( Hom ‘ ( 𝑐 ×c 𝑑 ) ) → ( 𝑢 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) , 𝑣 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ↦ ( 𝑓 ∈ ( 𝑢 𝑣 ) ↦ { 𝑓 } ) ) = ( 𝑢 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) , 𝑣 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ↦ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ ( 𝑐 ×c 𝑑 ) ) 𝑣 ) ↦ { 𝑓 } ) ) )
53 52 opeq2d ( = ( Hom ‘ ( 𝑐 ×c 𝑑 ) ) → ⟨ ( 𝑥 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ↦ { 𝑥 } ) , ( 𝑢 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) , 𝑣 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ↦ ( 𝑓 ∈ ( 𝑢 𝑣 ) ↦ { 𝑓 } ) ) ⟩ = ⟨ ( 𝑥 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ↦ { 𝑥 } ) , ( 𝑢 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) , 𝑣 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ↦ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ ( 𝑐 ×c 𝑑 ) ) 𝑣 ) ↦ { 𝑓 } ) ) ⟩ )
54 45 53 csbie ( Hom ‘ ( 𝑐 ×c 𝑑 ) ) / ⟨ ( 𝑥 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ↦ { 𝑥 } ) , ( 𝑢 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) , 𝑣 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ↦ ( 𝑓 ∈ ( 𝑢 𝑣 ) ↦ { 𝑓 } ) ) ⟩ = ⟨ ( 𝑥 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ↦ { 𝑥 } ) , ( 𝑢 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) , 𝑣 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ↦ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ ( 𝑐 ×c 𝑑 ) ) 𝑣 ) ↦ { 𝑓 } ) ) ⟩
55 44 50 54 3eqtr4i ( Hom ‘ ( 𝑐 ×c 𝑑 ) ) / ⟨ ( tpos I ↾ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ) , ( 𝑢 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) , 𝑣 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ↦ ( tpos I ↾ ( 𝑢 𝑣 ) ) ) ⟩ = ( Hom ‘ ( 𝑐 ×c 𝑑 ) ) / ⟨ ( 𝑥 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ↦ { 𝑥 } ) , ( 𝑢 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) , 𝑣 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ↦ ( 𝑓 ∈ ( 𝑢 𝑣 ) ↦ { 𝑓 } ) ) ⟩
56 23 29 55 3eqtri ( 𝑐 ×c 𝑑 ) / 𝑠 ( Base ‘ 𝑠 ) / 𝑏 ( Hom ‘ 𝑠 ) / ⟨ ( tpos I ↾ 𝑏 ) , ( 𝑢𝑏 , 𝑣𝑏 ↦ ( tpos I ↾ ( 𝑢 𝑣 ) ) ) ⟩ = ( Hom ‘ ( 𝑐 ×c 𝑑 ) ) / ⟨ ( 𝑥 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ↦ { 𝑥 } ) , ( 𝑢 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) , 𝑣 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ↦ ( 𝑓 ∈ ( 𝑢 𝑣 ) ↦ { 𝑓 } ) ) ⟩
57 14 20 56 3eqtr4ri ( 𝑐 ×c 𝑑 ) / 𝑠 ( Base ‘ 𝑠 ) / 𝑏 ( Hom ‘ 𝑠 ) / ⟨ ( tpos I ↾ 𝑏 ) , ( 𝑢𝑏 , 𝑣𝑏 ↦ ( tpos I ↾ ( 𝑢 𝑣 ) ) ) ⟩ = ( 𝑐 ×c 𝑑 ) / 𝑠 ( Base ‘ 𝑠 ) / 𝑏 ( Hom ‘ 𝑠 ) / ⟨ ( 𝑥𝑏 { 𝑥 } ) , ( 𝑢𝑏 , 𝑣𝑏 ↦ ( 𝑓 ∈ ( 𝑢 𝑣 ) ↦ { 𝑓 } ) ) ⟩
58 57 a1i ( ( 𝑐 ∈ V ∧ 𝑑 ∈ V ) → ( 𝑐 ×c 𝑑 ) / 𝑠 ( Base ‘ 𝑠 ) / 𝑏 ( Hom ‘ 𝑠 ) / ⟨ ( tpos I ↾ 𝑏 ) , ( 𝑢𝑏 , 𝑣𝑏 ↦ ( tpos I ↾ ( 𝑢 𝑣 ) ) ) ⟩ = ( 𝑐 ×c 𝑑 ) / 𝑠 ( Base ‘ 𝑠 ) / 𝑏 ( Hom ‘ 𝑠 ) / ⟨ ( 𝑥𝑏 { 𝑥 } ) , ( 𝑢𝑏 , 𝑣𝑏 ↦ ( 𝑓 ∈ ( 𝑢 𝑣 ) ↦ { 𝑓 } ) ) ⟩ )
59 58 mpoeq3ia ( 𝑐 ∈ V , 𝑑 ∈ V ↦ ( 𝑐 ×c 𝑑 ) / 𝑠 ( Base ‘ 𝑠 ) / 𝑏 ( Hom ‘ 𝑠 ) / ⟨ ( tpos I ↾ 𝑏 ) , ( 𝑢𝑏 , 𝑣𝑏 ↦ ( tpos I ↾ ( 𝑢 𝑣 ) ) ) ⟩ ) = ( 𝑐 ∈ V , 𝑑 ∈ V ↦ ( 𝑐 ×c 𝑑 ) / 𝑠 ( Base ‘ 𝑠 ) / 𝑏 ( Hom ‘ 𝑠 ) / ⟨ ( 𝑥𝑏 { 𝑥 } ) , ( 𝑢𝑏 , 𝑣𝑏 ↦ ( 𝑓 ∈ ( 𝑢 𝑣 ) ↦ { 𝑓 } ) ) ⟩ )
60 1 59 eqtr4i swapF = ( 𝑐 ∈ V , 𝑑 ∈ V ↦ ( 𝑐 ×c 𝑑 ) / 𝑠 ( Base ‘ 𝑠 ) / 𝑏 ( Hom ‘ 𝑠 ) / ⟨ ( tpos I ↾ 𝑏 ) , ( 𝑢𝑏 , 𝑣𝑏 ↦ ( tpos I ↾ ( 𝑢 𝑣 ) ) ) ⟩ )