| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-swapf |
⊢ swapF = ( 𝑐 ∈ V , 𝑑 ∈ V ↦ ⦋ ( 𝑐 ×c 𝑑 ) / 𝑠 ⦌ ⦋ ( Base ‘ 𝑠 ) / 𝑏 ⦌ ⦋ ( Hom ‘ 𝑠 ) / ℎ ⦌ 〈 ( 𝑥 ∈ 𝑏 ↦ ∪ ◡ { 𝑥 } ) , ( 𝑢 ∈ 𝑏 , 𝑣 ∈ 𝑏 ↦ ( 𝑓 ∈ ( 𝑢 ℎ 𝑣 ) ↦ ∪ ◡ { 𝑓 } ) ) 〉 ) |
| 2 |
|
fvex |
⊢ ( Base ‘ ( 𝑐 ×c 𝑑 ) ) ∈ V |
| 3 |
|
id |
⊢ ( 𝑏 = ( Base ‘ ( 𝑐 ×c 𝑑 ) ) → 𝑏 = ( Base ‘ ( 𝑐 ×c 𝑑 ) ) ) |
| 4 |
|
eqid |
⊢ ( 𝑐 ×c 𝑑 ) = ( 𝑐 ×c 𝑑 ) |
| 5 |
|
eqid |
⊢ ( Base ‘ 𝑐 ) = ( Base ‘ 𝑐 ) |
| 6 |
|
eqid |
⊢ ( Base ‘ 𝑑 ) = ( Base ‘ 𝑑 ) |
| 7 |
4 5 6
|
xpcbas |
⊢ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) = ( Base ‘ ( 𝑐 ×c 𝑑 ) ) |
| 8 |
3 7
|
eqtr4di |
⊢ ( 𝑏 = ( Base ‘ ( 𝑐 ×c 𝑑 ) ) → 𝑏 = ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ) |
| 9 |
8
|
mpteq1d |
⊢ ( 𝑏 = ( Base ‘ ( 𝑐 ×c 𝑑 ) ) → ( 𝑥 ∈ 𝑏 ↦ ∪ ◡ { 𝑥 } ) = ( 𝑥 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ↦ ∪ ◡ { 𝑥 } ) ) |
| 10 |
|
eqidd |
⊢ ( 𝑏 = ( Base ‘ ( 𝑐 ×c 𝑑 ) ) → ( 𝑓 ∈ ( 𝑢 ℎ 𝑣 ) ↦ ∪ ◡ { 𝑓 } ) = ( 𝑓 ∈ ( 𝑢 ℎ 𝑣 ) ↦ ∪ ◡ { 𝑓 } ) ) |
| 11 |
8 8 10
|
mpoeq123dv |
⊢ ( 𝑏 = ( Base ‘ ( 𝑐 ×c 𝑑 ) ) → ( 𝑢 ∈ 𝑏 , 𝑣 ∈ 𝑏 ↦ ( 𝑓 ∈ ( 𝑢 ℎ 𝑣 ) ↦ ∪ ◡ { 𝑓 } ) ) = ( 𝑢 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) , 𝑣 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ↦ ( 𝑓 ∈ ( 𝑢 ℎ 𝑣 ) ↦ ∪ ◡ { 𝑓 } ) ) ) |
| 12 |
9 11
|
opeq12d |
⊢ ( 𝑏 = ( Base ‘ ( 𝑐 ×c 𝑑 ) ) → 〈 ( 𝑥 ∈ 𝑏 ↦ ∪ ◡ { 𝑥 } ) , ( 𝑢 ∈ 𝑏 , 𝑣 ∈ 𝑏 ↦ ( 𝑓 ∈ ( 𝑢 ℎ 𝑣 ) ↦ ∪ ◡ { 𝑓 } ) ) 〉 = 〈 ( 𝑥 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ↦ ∪ ◡ { 𝑥 } ) , ( 𝑢 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) , 𝑣 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ↦ ( 𝑓 ∈ ( 𝑢 ℎ 𝑣 ) ↦ ∪ ◡ { 𝑓 } ) ) 〉 ) |
| 13 |
12
|
csbeq2dv |
⊢ ( 𝑏 = ( Base ‘ ( 𝑐 ×c 𝑑 ) ) → ⦋ ( Hom ‘ ( 𝑐 ×c 𝑑 ) ) / ℎ ⦌ 〈 ( 𝑥 ∈ 𝑏 ↦ ∪ ◡ { 𝑥 } ) , ( 𝑢 ∈ 𝑏 , 𝑣 ∈ 𝑏 ↦ ( 𝑓 ∈ ( 𝑢 ℎ 𝑣 ) ↦ ∪ ◡ { 𝑓 } ) ) 〉 = ⦋ ( Hom ‘ ( 𝑐 ×c 𝑑 ) ) / ℎ ⦌ 〈 ( 𝑥 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ↦ ∪ ◡ { 𝑥 } ) , ( 𝑢 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) , 𝑣 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ↦ ( 𝑓 ∈ ( 𝑢 ℎ 𝑣 ) ↦ ∪ ◡ { 𝑓 } ) ) 〉 ) |
| 14 |
2 13
|
csbie |
⊢ ⦋ ( Base ‘ ( 𝑐 ×c 𝑑 ) ) / 𝑏 ⦌ ⦋ ( Hom ‘ ( 𝑐 ×c 𝑑 ) ) / ℎ ⦌ 〈 ( 𝑥 ∈ 𝑏 ↦ ∪ ◡ { 𝑥 } ) , ( 𝑢 ∈ 𝑏 , 𝑣 ∈ 𝑏 ↦ ( 𝑓 ∈ ( 𝑢 ℎ 𝑣 ) ↦ ∪ ◡ { 𝑓 } ) ) 〉 = ⦋ ( Hom ‘ ( 𝑐 ×c 𝑑 ) ) / ℎ ⦌ 〈 ( 𝑥 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ↦ ∪ ◡ { 𝑥 } ) , ( 𝑢 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) , 𝑣 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ↦ ( 𝑓 ∈ ( 𝑢 ℎ 𝑣 ) ↦ ∪ ◡ { 𝑓 } ) ) 〉 |
| 15 |
|
ovex |
⊢ ( 𝑐 ×c 𝑑 ) ∈ V |
| 16 |
|
fveq2 |
⊢ ( 𝑠 = ( 𝑐 ×c 𝑑 ) → ( Base ‘ 𝑠 ) = ( Base ‘ ( 𝑐 ×c 𝑑 ) ) ) |
| 17 |
|
fveq2 |
⊢ ( 𝑠 = ( 𝑐 ×c 𝑑 ) → ( Hom ‘ 𝑠 ) = ( Hom ‘ ( 𝑐 ×c 𝑑 ) ) ) |
| 18 |
17
|
csbeq1d |
⊢ ( 𝑠 = ( 𝑐 ×c 𝑑 ) → ⦋ ( Hom ‘ 𝑠 ) / ℎ ⦌ 〈 ( 𝑥 ∈ 𝑏 ↦ ∪ ◡ { 𝑥 } ) , ( 𝑢 ∈ 𝑏 , 𝑣 ∈ 𝑏 ↦ ( 𝑓 ∈ ( 𝑢 ℎ 𝑣 ) ↦ ∪ ◡ { 𝑓 } ) ) 〉 = ⦋ ( Hom ‘ ( 𝑐 ×c 𝑑 ) ) / ℎ ⦌ 〈 ( 𝑥 ∈ 𝑏 ↦ ∪ ◡ { 𝑥 } ) , ( 𝑢 ∈ 𝑏 , 𝑣 ∈ 𝑏 ↦ ( 𝑓 ∈ ( 𝑢 ℎ 𝑣 ) ↦ ∪ ◡ { 𝑓 } ) ) 〉 ) |
| 19 |
16 18
|
csbeq12dv |
⊢ ( 𝑠 = ( 𝑐 ×c 𝑑 ) → ⦋ ( Base ‘ 𝑠 ) / 𝑏 ⦌ ⦋ ( Hom ‘ 𝑠 ) / ℎ ⦌ 〈 ( 𝑥 ∈ 𝑏 ↦ ∪ ◡ { 𝑥 } ) , ( 𝑢 ∈ 𝑏 , 𝑣 ∈ 𝑏 ↦ ( 𝑓 ∈ ( 𝑢 ℎ 𝑣 ) ↦ ∪ ◡ { 𝑓 } ) ) 〉 = ⦋ ( Base ‘ ( 𝑐 ×c 𝑑 ) ) / 𝑏 ⦌ ⦋ ( Hom ‘ ( 𝑐 ×c 𝑑 ) ) / ℎ ⦌ 〈 ( 𝑥 ∈ 𝑏 ↦ ∪ ◡ { 𝑥 } ) , ( 𝑢 ∈ 𝑏 , 𝑣 ∈ 𝑏 ↦ ( 𝑓 ∈ ( 𝑢 ℎ 𝑣 ) ↦ ∪ ◡ { 𝑓 } ) ) 〉 ) |
| 20 |
15 19
|
csbie |
⊢ ⦋ ( 𝑐 ×c 𝑑 ) / 𝑠 ⦌ ⦋ ( Base ‘ 𝑠 ) / 𝑏 ⦌ ⦋ ( Hom ‘ 𝑠 ) / ℎ ⦌ 〈 ( 𝑥 ∈ 𝑏 ↦ ∪ ◡ { 𝑥 } ) , ( 𝑢 ∈ 𝑏 , 𝑣 ∈ 𝑏 ↦ ( 𝑓 ∈ ( 𝑢 ℎ 𝑣 ) ↦ ∪ ◡ { 𝑓 } ) ) 〉 = ⦋ ( Base ‘ ( 𝑐 ×c 𝑑 ) ) / 𝑏 ⦌ ⦋ ( Hom ‘ ( 𝑐 ×c 𝑑 ) ) / ℎ ⦌ 〈 ( 𝑥 ∈ 𝑏 ↦ ∪ ◡ { 𝑥 } ) , ( 𝑢 ∈ 𝑏 , 𝑣 ∈ 𝑏 ↦ ( 𝑓 ∈ ( 𝑢 ℎ 𝑣 ) ↦ ∪ ◡ { 𝑓 } ) ) 〉 |
| 21 |
17
|
csbeq1d |
⊢ ( 𝑠 = ( 𝑐 ×c 𝑑 ) → ⦋ ( Hom ‘ 𝑠 ) / ℎ ⦌ 〈 ( tpos I ↾ 𝑏 ) , ( 𝑢 ∈ 𝑏 , 𝑣 ∈ 𝑏 ↦ ( tpos I ↾ ( 𝑢 ℎ 𝑣 ) ) ) 〉 = ⦋ ( Hom ‘ ( 𝑐 ×c 𝑑 ) ) / ℎ ⦌ 〈 ( tpos I ↾ 𝑏 ) , ( 𝑢 ∈ 𝑏 , 𝑣 ∈ 𝑏 ↦ ( tpos I ↾ ( 𝑢 ℎ 𝑣 ) ) ) 〉 ) |
| 22 |
16 21
|
csbeq12dv |
⊢ ( 𝑠 = ( 𝑐 ×c 𝑑 ) → ⦋ ( Base ‘ 𝑠 ) / 𝑏 ⦌ ⦋ ( Hom ‘ 𝑠 ) / ℎ ⦌ 〈 ( tpos I ↾ 𝑏 ) , ( 𝑢 ∈ 𝑏 , 𝑣 ∈ 𝑏 ↦ ( tpos I ↾ ( 𝑢 ℎ 𝑣 ) ) ) 〉 = ⦋ ( Base ‘ ( 𝑐 ×c 𝑑 ) ) / 𝑏 ⦌ ⦋ ( Hom ‘ ( 𝑐 ×c 𝑑 ) ) / ℎ ⦌ 〈 ( tpos I ↾ 𝑏 ) , ( 𝑢 ∈ 𝑏 , 𝑣 ∈ 𝑏 ↦ ( tpos I ↾ ( 𝑢 ℎ 𝑣 ) ) ) 〉 ) |
| 23 |
15 22
|
csbie |
⊢ ⦋ ( 𝑐 ×c 𝑑 ) / 𝑠 ⦌ ⦋ ( Base ‘ 𝑠 ) / 𝑏 ⦌ ⦋ ( Hom ‘ 𝑠 ) / ℎ ⦌ 〈 ( tpos I ↾ 𝑏 ) , ( 𝑢 ∈ 𝑏 , 𝑣 ∈ 𝑏 ↦ ( tpos I ↾ ( 𝑢 ℎ 𝑣 ) ) ) 〉 = ⦋ ( Base ‘ ( 𝑐 ×c 𝑑 ) ) / 𝑏 ⦌ ⦋ ( Hom ‘ ( 𝑐 ×c 𝑑 ) ) / ℎ ⦌ 〈 ( tpos I ↾ 𝑏 ) , ( 𝑢 ∈ 𝑏 , 𝑣 ∈ 𝑏 ↦ ( tpos I ↾ ( 𝑢 ℎ 𝑣 ) ) ) 〉 |
| 24 |
8
|
reseq2d |
⊢ ( 𝑏 = ( Base ‘ ( 𝑐 ×c 𝑑 ) ) → ( tpos I ↾ 𝑏 ) = ( tpos I ↾ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ) ) |
| 25 |
|
eqidd |
⊢ ( 𝑏 = ( Base ‘ ( 𝑐 ×c 𝑑 ) ) → ( tpos I ↾ ( 𝑢 ℎ 𝑣 ) ) = ( tpos I ↾ ( 𝑢 ℎ 𝑣 ) ) ) |
| 26 |
8 8 25
|
mpoeq123dv |
⊢ ( 𝑏 = ( Base ‘ ( 𝑐 ×c 𝑑 ) ) → ( 𝑢 ∈ 𝑏 , 𝑣 ∈ 𝑏 ↦ ( tpos I ↾ ( 𝑢 ℎ 𝑣 ) ) ) = ( 𝑢 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) , 𝑣 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ↦ ( tpos I ↾ ( 𝑢 ℎ 𝑣 ) ) ) ) |
| 27 |
24 26
|
opeq12d |
⊢ ( 𝑏 = ( Base ‘ ( 𝑐 ×c 𝑑 ) ) → 〈 ( tpos I ↾ 𝑏 ) , ( 𝑢 ∈ 𝑏 , 𝑣 ∈ 𝑏 ↦ ( tpos I ↾ ( 𝑢 ℎ 𝑣 ) ) ) 〉 = 〈 ( tpos I ↾ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ) , ( 𝑢 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) , 𝑣 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ↦ ( tpos I ↾ ( 𝑢 ℎ 𝑣 ) ) ) 〉 ) |
| 28 |
27
|
csbeq2dv |
⊢ ( 𝑏 = ( Base ‘ ( 𝑐 ×c 𝑑 ) ) → ⦋ ( Hom ‘ ( 𝑐 ×c 𝑑 ) ) / ℎ ⦌ 〈 ( tpos I ↾ 𝑏 ) , ( 𝑢 ∈ 𝑏 , 𝑣 ∈ 𝑏 ↦ ( tpos I ↾ ( 𝑢 ℎ 𝑣 ) ) ) 〉 = ⦋ ( Hom ‘ ( 𝑐 ×c 𝑑 ) ) / ℎ ⦌ 〈 ( tpos I ↾ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ) , ( 𝑢 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) , 𝑣 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ↦ ( tpos I ↾ ( 𝑢 ℎ 𝑣 ) ) ) 〉 ) |
| 29 |
2 28
|
csbie |
⊢ ⦋ ( Base ‘ ( 𝑐 ×c 𝑑 ) ) / 𝑏 ⦌ ⦋ ( Hom ‘ ( 𝑐 ×c 𝑑 ) ) / ℎ ⦌ 〈 ( tpos I ↾ 𝑏 ) , ( 𝑢 ∈ 𝑏 , 𝑣 ∈ 𝑏 ↦ ( tpos I ↾ ( 𝑢 ℎ 𝑣 ) ) ) 〉 = ⦋ ( Hom ‘ ( 𝑐 ×c 𝑑 ) ) / ℎ ⦌ 〈 ( tpos I ↾ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ) , ( 𝑢 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) , 𝑣 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ↦ ( tpos I ↾ ( 𝑢 ℎ 𝑣 ) ) ) 〉 |
| 30 |
|
eqid |
⊢ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) = ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) |
| 31 |
30
|
tposideq2 |
⊢ ( tpos I ↾ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ) = ( 𝑥 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ↦ ∪ ◡ { 𝑥 } ) |
| 32 |
|
eqid |
⊢ ( ( ( 1st ‘ 𝑢 ) ( Hom ‘ 𝑐 ) ( 1st ‘ 𝑣 ) ) × ( ( 2nd ‘ 𝑢 ) ( Hom ‘ 𝑑 ) ( 2nd ‘ 𝑣 ) ) ) = ( ( ( 1st ‘ 𝑢 ) ( Hom ‘ 𝑐 ) ( 1st ‘ 𝑣 ) ) × ( ( 2nd ‘ 𝑢 ) ( Hom ‘ 𝑑 ) ( 2nd ‘ 𝑣 ) ) ) |
| 33 |
32
|
tposideq2 |
⊢ ( tpos I ↾ ( ( ( 1st ‘ 𝑢 ) ( Hom ‘ 𝑐 ) ( 1st ‘ 𝑣 ) ) × ( ( 2nd ‘ 𝑢 ) ( Hom ‘ 𝑑 ) ( 2nd ‘ 𝑣 ) ) ) ) = ( 𝑓 ∈ ( ( ( 1st ‘ 𝑢 ) ( Hom ‘ 𝑐 ) ( 1st ‘ 𝑣 ) ) × ( ( 2nd ‘ 𝑢 ) ( Hom ‘ 𝑑 ) ( 2nd ‘ 𝑣 ) ) ) ↦ ∪ ◡ { 𝑓 } ) |
| 34 |
|
eqid |
⊢ ( Hom ‘ 𝑐 ) = ( Hom ‘ 𝑐 ) |
| 35 |
|
eqid |
⊢ ( Hom ‘ 𝑑 ) = ( Hom ‘ 𝑑 ) |
| 36 |
|
eqid |
⊢ ( Hom ‘ ( 𝑐 ×c 𝑑 ) ) = ( Hom ‘ ( 𝑐 ×c 𝑑 ) ) |
| 37 |
|
simpl |
⊢ ( ( 𝑢 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ∧ 𝑣 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ) → 𝑢 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ) |
| 38 |
|
simpr |
⊢ ( ( 𝑢 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ∧ 𝑣 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ) → 𝑣 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ) |
| 39 |
4 7 34 35 36 37 38
|
xpchom |
⊢ ( ( 𝑢 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ∧ 𝑣 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ) → ( 𝑢 ( Hom ‘ ( 𝑐 ×c 𝑑 ) ) 𝑣 ) = ( ( ( 1st ‘ 𝑢 ) ( Hom ‘ 𝑐 ) ( 1st ‘ 𝑣 ) ) × ( ( 2nd ‘ 𝑢 ) ( Hom ‘ 𝑑 ) ( 2nd ‘ 𝑣 ) ) ) ) |
| 40 |
39
|
reseq2d |
⊢ ( ( 𝑢 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ∧ 𝑣 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ) → ( tpos I ↾ ( 𝑢 ( Hom ‘ ( 𝑐 ×c 𝑑 ) ) 𝑣 ) ) = ( tpos I ↾ ( ( ( 1st ‘ 𝑢 ) ( Hom ‘ 𝑐 ) ( 1st ‘ 𝑣 ) ) × ( ( 2nd ‘ 𝑢 ) ( Hom ‘ 𝑑 ) ( 2nd ‘ 𝑣 ) ) ) ) ) |
| 41 |
39
|
mpteq1d |
⊢ ( ( 𝑢 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ∧ 𝑣 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ) → ( 𝑓 ∈ ( 𝑢 ( Hom ‘ ( 𝑐 ×c 𝑑 ) ) 𝑣 ) ↦ ∪ ◡ { 𝑓 } ) = ( 𝑓 ∈ ( ( ( 1st ‘ 𝑢 ) ( Hom ‘ 𝑐 ) ( 1st ‘ 𝑣 ) ) × ( ( 2nd ‘ 𝑢 ) ( Hom ‘ 𝑑 ) ( 2nd ‘ 𝑣 ) ) ) ↦ ∪ ◡ { 𝑓 } ) ) |
| 42 |
33 40 41
|
3eqtr4a |
⊢ ( ( 𝑢 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ∧ 𝑣 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ) → ( tpos I ↾ ( 𝑢 ( Hom ‘ ( 𝑐 ×c 𝑑 ) ) 𝑣 ) ) = ( 𝑓 ∈ ( 𝑢 ( Hom ‘ ( 𝑐 ×c 𝑑 ) ) 𝑣 ) ↦ ∪ ◡ { 𝑓 } ) ) |
| 43 |
42
|
mpoeq3ia |
⊢ ( 𝑢 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) , 𝑣 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ↦ ( tpos I ↾ ( 𝑢 ( Hom ‘ ( 𝑐 ×c 𝑑 ) ) 𝑣 ) ) ) = ( 𝑢 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) , 𝑣 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ↦ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ ( 𝑐 ×c 𝑑 ) ) 𝑣 ) ↦ ∪ ◡ { 𝑓 } ) ) |
| 44 |
31 43
|
opeq12i |
⊢ 〈 ( tpos I ↾ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ) , ( 𝑢 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) , 𝑣 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ↦ ( tpos I ↾ ( 𝑢 ( Hom ‘ ( 𝑐 ×c 𝑑 ) ) 𝑣 ) ) ) 〉 = 〈 ( 𝑥 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ↦ ∪ ◡ { 𝑥 } ) , ( 𝑢 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) , 𝑣 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ↦ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ ( 𝑐 ×c 𝑑 ) ) 𝑣 ) ↦ ∪ ◡ { 𝑓 } ) ) 〉 |
| 45 |
|
fvex |
⊢ ( Hom ‘ ( 𝑐 ×c 𝑑 ) ) ∈ V |
| 46 |
|
oveq |
⊢ ( ℎ = ( Hom ‘ ( 𝑐 ×c 𝑑 ) ) → ( 𝑢 ℎ 𝑣 ) = ( 𝑢 ( Hom ‘ ( 𝑐 ×c 𝑑 ) ) 𝑣 ) ) |
| 47 |
46
|
reseq2d |
⊢ ( ℎ = ( Hom ‘ ( 𝑐 ×c 𝑑 ) ) → ( tpos I ↾ ( 𝑢 ℎ 𝑣 ) ) = ( tpos I ↾ ( 𝑢 ( Hom ‘ ( 𝑐 ×c 𝑑 ) ) 𝑣 ) ) ) |
| 48 |
47
|
mpoeq3dv |
⊢ ( ℎ = ( Hom ‘ ( 𝑐 ×c 𝑑 ) ) → ( 𝑢 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) , 𝑣 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ↦ ( tpos I ↾ ( 𝑢 ℎ 𝑣 ) ) ) = ( 𝑢 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) , 𝑣 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ↦ ( tpos I ↾ ( 𝑢 ( Hom ‘ ( 𝑐 ×c 𝑑 ) ) 𝑣 ) ) ) ) |
| 49 |
48
|
opeq2d |
⊢ ( ℎ = ( Hom ‘ ( 𝑐 ×c 𝑑 ) ) → 〈 ( tpos I ↾ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ) , ( 𝑢 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) , 𝑣 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ↦ ( tpos I ↾ ( 𝑢 ℎ 𝑣 ) ) ) 〉 = 〈 ( tpos I ↾ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ) , ( 𝑢 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) , 𝑣 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ↦ ( tpos I ↾ ( 𝑢 ( Hom ‘ ( 𝑐 ×c 𝑑 ) ) 𝑣 ) ) ) 〉 ) |
| 50 |
45 49
|
csbie |
⊢ ⦋ ( Hom ‘ ( 𝑐 ×c 𝑑 ) ) / ℎ ⦌ 〈 ( tpos I ↾ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ) , ( 𝑢 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) , 𝑣 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ↦ ( tpos I ↾ ( 𝑢 ℎ 𝑣 ) ) ) 〉 = 〈 ( tpos I ↾ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ) , ( 𝑢 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) , 𝑣 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ↦ ( tpos I ↾ ( 𝑢 ( Hom ‘ ( 𝑐 ×c 𝑑 ) ) 𝑣 ) ) ) 〉 |
| 51 |
46
|
mpteq1d |
⊢ ( ℎ = ( Hom ‘ ( 𝑐 ×c 𝑑 ) ) → ( 𝑓 ∈ ( 𝑢 ℎ 𝑣 ) ↦ ∪ ◡ { 𝑓 } ) = ( 𝑓 ∈ ( 𝑢 ( Hom ‘ ( 𝑐 ×c 𝑑 ) ) 𝑣 ) ↦ ∪ ◡ { 𝑓 } ) ) |
| 52 |
51
|
mpoeq3dv |
⊢ ( ℎ = ( Hom ‘ ( 𝑐 ×c 𝑑 ) ) → ( 𝑢 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) , 𝑣 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ↦ ( 𝑓 ∈ ( 𝑢 ℎ 𝑣 ) ↦ ∪ ◡ { 𝑓 } ) ) = ( 𝑢 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) , 𝑣 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ↦ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ ( 𝑐 ×c 𝑑 ) ) 𝑣 ) ↦ ∪ ◡ { 𝑓 } ) ) ) |
| 53 |
52
|
opeq2d |
⊢ ( ℎ = ( Hom ‘ ( 𝑐 ×c 𝑑 ) ) → 〈 ( 𝑥 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ↦ ∪ ◡ { 𝑥 } ) , ( 𝑢 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) , 𝑣 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ↦ ( 𝑓 ∈ ( 𝑢 ℎ 𝑣 ) ↦ ∪ ◡ { 𝑓 } ) ) 〉 = 〈 ( 𝑥 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ↦ ∪ ◡ { 𝑥 } ) , ( 𝑢 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) , 𝑣 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ↦ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ ( 𝑐 ×c 𝑑 ) ) 𝑣 ) ↦ ∪ ◡ { 𝑓 } ) ) 〉 ) |
| 54 |
45 53
|
csbie |
⊢ ⦋ ( Hom ‘ ( 𝑐 ×c 𝑑 ) ) / ℎ ⦌ 〈 ( 𝑥 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ↦ ∪ ◡ { 𝑥 } ) , ( 𝑢 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) , 𝑣 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ↦ ( 𝑓 ∈ ( 𝑢 ℎ 𝑣 ) ↦ ∪ ◡ { 𝑓 } ) ) 〉 = 〈 ( 𝑥 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ↦ ∪ ◡ { 𝑥 } ) , ( 𝑢 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) , 𝑣 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ↦ ( 𝑓 ∈ ( 𝑢 ( Hom ‘ ( 𝑐 ×c 𝑑 ) ) 𝑣 ) ↦ ∪ ◡ { 𝑓 } ) ) 〉 |
| 55 |
44 50 54
|
3eqtr4i |
⊢ ⦋ ( Hom ‘ ( 𝑐 ×c 𝑑 ) ) / ℎ ⦌ 〈 ( tpos I ↾ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ) , ( 𝑢 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) , 𝑣 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ↦ ( tpos I ↾ ( 𝑢 ℎ 𝑣 ) ) ) 〉 = ⦋ ( Hom ‘ ( 𝑐 ×c 𝑑 ) ) / ℎ ⦌ 〈 ( 𝑥 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ↦ ∪ ◡ { 𝑥 } ) , ( 𝑢 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) , 𝑣 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ↦ ( 𝑓 ∈ ( 𝑢 ℎ 𝑣 ) ↦ ∪ ◡ { 𝑓 } ) ) 〉 |
| 56 |
23 29 55
|
3eqtri |
⊢ ⦋ ( 𝑐 ×c 𝑑 ) / 𝑠 ⦌ ⦋ ( Base ‘ 𝑠 ) / 𝑏 ⦌ ⦋ ( Hom ‘ 𝑠 ) / ℎ ⦌ 〈 ( tpos I ↾ 𝑏 ) , ( 𝑢 ∈ 𝑏 , 𝑣 ∈ 𝑏 ↦ ( tpos I ↾ ( 𝑢 ℎ 𝑣 ) ) ) 〉 = ⦋ ( Hom ‘ ( 𝑐 ×c 𝑑 ) ) / ℎ ⦌ 〈 ( 𝑥 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ↦ ∪ ◡ { 𝑥 } ) , ( 𝑢 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) , 𝑣 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑑 ) ) ↦ ( 𝑓 ∈ ( 𝑢 ℎ 𝑣 ) ↦ ∪ ◡ { 𝑓 } ) ) 〉 |
| 57 |
14 20 56
|
3eqtr4ri |
⊢ ⦋ ( 𝑐 ×c 𝑑 ) / 𝑠 ⦌ ⦋ ( Base ‘ 𝑠 ) / 𝑏 ⦌ ⦋ ( Hom ‘ 𝑠 ) / ℎ ⦌ 〈 ( tpos I ↾ 𝑏 ) , ( 𝑢 ∈ 𝑏 , 𝑣 ∈ 𝑏 ↦ ( tpos I ↾ ( 𝑢 ℎ 𝑣 ) ) ) 〉 = ⦋ ( 𝑐 ×c 𝑑 ) / 𝑠 ⦌ ⦋ ( Base ‘ 𝑠 ) / 𝑏 ⦌ ⦋ ( Hom ‘ 𝑠 ) / ℎ ⦌ 〈 ( 𝑥 ∈ 𝑏 ↦ ∪ ◡ { 𝑥 } ) , ( 𝑢 ∈ 𝑏 , 𝑣 ∈ 𝑏 ↦ ( 𝑓 ∈ ( 𝑢 ℎ 𝑣 ) ↦ ∪ ◡ { 𝑓 } ) ) 〉 |
| 58 |
57
|
a1i |
⊢ ( ( 𝑐 ∈ V ∧ 𝑑 ∈ V ) → ⦋ ( 𝑐 ×c 𝑑 ) / 𝑠 ⦌ ⦋ ( Base ‘ 𝑠 ) / 𝑏 ⦌ ⦋ ( Hom ‘ 𝑠 ) / ℎ ⦌ 〈 ( tpos I ↾ 𝑏 ) , ( 𝑢 ∈ 𝑏 , 𝑣 ∈ 𝑏 ↦ ( tpos I ↾ ( 𝑢 ℎ 𝑣 ) ) ) 〉 = ⦋ ( 𝑐 ×c 𝑑 ) / 𝑠 ⦌ ⦋ ( Base ‘ 𝑠 ) / 𝑏 ⦌ ⦋ ( Hom ‘ 𝑠 ) / ℎ ⦌ 〈 ( 𝑥 ∈ 𝑏 ↦ ∪ ◡ { 𝑥 } ) , ( 𝑢 ∈ 𝑏 , 𝑣 ∈ 𝑏 ↦ ( 𝑓 ∈ ( 𝑢 ℎ 𝑣 ) ↦ ∪ ◡ { 𝑓 } ) ) 〉 ) |
| 59 |
58
|
mpoeq3ia |
⊢ ( 𝑐 ∈ V , 𝑑 ∈ V ↦ ⦋ ( 𝑐 ×c 𝑑 ) / 𝑠 ⦌ ⦋ ( Base ‘ 𝑠 ) / 𝑏 ⦌ ⦋ ( Hom ‘ 𝑠 ) / ℎ ⦌ 〈 ( tpos I ↾ 𝑏 ) , ( 𝑢 ∈ 𝑏 , 𝑣 ∈ 𝑏 ↦ ( tpos I ↾ ( 𝑢 ℎ 𝑣 ) ) ) 〉 ) = ( 𝑐 ∈ V , 𝑑 ∈ V ↦ ⦋ ( 𝑐 ×c 𝑑 ) / 𝑠 ⦌ ⦋ ( Base ‘ 𝑠 ) / 𝑏 ⦌ ⦋ ( Hom ‘ 𝑠 ) / ℎ ⦌ 〈 ( 𝑥 ∈ 𝑏 ↦ ∪ ◡ { 𝑥 } ) , ( 𝑢 ∈ 𝑏 , 𝑣 ∈ 𝑏 ↦ ( 𝑓 ∈ ( 𝑢 ℎ 𝑣 ) ↦ ∪ ◡ { 𝑓 } ) ) 〉 ) |
| 60 |
1 59
|
eqtr4i |
⊢ swapF = ( 𝑐 ∈ V , 𝑑 ∈ V ↦ ⦋ ( 𝑐 ×c 𝑑 ) / 𝑠 ⦌ ⦋ ( Base ‘ 𝑠 ) / 𝑏 ⦌ ⦋ ( Hom ‘ 𝑠 ) / ℎ ⦌ 〈 ( tpos I ↾ 𝑏 ) , ( 𝑢 ∈ 𝑏 , 𝑣 ∈ 𝑏 ↦ ( tpos I ↾ ( 𝑢 ℎ 𝑣 ) ) ) 〉 ) |