| Step |
Hyp |
Ref |
Expression |
| 1 |
|
swapfid.c |
|- ( ph -> C e. Cat ) |
| 2 |
|
swapfid.d |
|- ( ph -> D e. Cat ) |
| 3 |
|
swapfid.s |
|- S = ( C Xc. D ) |
| 4 |
|
swapfid.t |
|- T = ( D Xc. C ) |
| 5 |
|
swapfid.o |
|- ( ph -> ( C swapF D ) = <. O , P >. ) |
| 6 |
1 2 3 4 5
|
swapffunc |
|- ( ph -> O ( S Func T ) P ) |
| 7 |
5
|
adantr |
|- ( ( ph /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) ) ) -> ( C swapF D ) = <. O , P >. ) |
| 8 |
|
eqid |
|- ( Hom ` S ) = ( Hom ` S ) |
| 9 |
|
eqid |
|- ( Hom ` T ) = ( Hom ` T ) |
| 10 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
| 11 |
|
simprl |
|- ( ( ph /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) ) ) -> x e. ( Base ` S ) ) |
| 12 |
|
simprr |
|- ( ( ph /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) ) ) -> y e. ( Base ` S ) ) |
| 13 |
7 3 4 8 9 10 11 12
|
swapf2f1oa |
|- ( ( ph /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) ) ) -> ( x P y ) : ( x ( Hom ` S ) y ) -1-1-onto-> ( ( O ` x ) ( Hom ` T ) ( O ` y ) ) ) |
| 14 |
13
|
ralrimivva |
|- ( ph -> A. x e. ( Base ` S ) A. y e. ( Base ` S ) ( x P y ) : ( x ( Hom ` S ) y ) -1-1-onto-> ( ( O ` x ) ( Hom ` T ) ( O ` y ) ) ) |
| 15 |
10 8 9
|
isffth2 |
|- ( O ( ( S Full T ) i^i ( S Faith T ) ) P <-> ( O ( S Func T ) P /\ A. x e. ( Base ` S ) A. y e. ( Base ` S ) ( x P y ) : ( x ( Hom ` S ) y ) -1-1-onto-> ( ( O ` x ) ( Hom ` T ) ( O ` y ) ) ) ) |
| 16 |
6 14 15
|
sylanbrc |
|- ( ph -> O ( ( S Full T ) i^i ( S Faith T ) ) P ) |