Metamath Proof Explorer


Theorem swapfffth

Description: The swap functor is a fully faithful functor. (Contributed by Zhi Wang, 8-Oct-2025)

Ref Expression
Hypotheses swapfid.c φ C Cat
swapfid.d φ D Cat
swapfid.s S = C × c D
swapfid.t T = D × c C
swapfid.o No typesetting found for |- ( ph -> ( C swapF D ) = <. O , P >. ) with typecode |-
Assertion swapfffth φ O S Full T S Faith T P

Proof

Step Hyp Ref Expression
1 swapfid.c φ C Cat
2 swapfid.d φ D Cat
3 swapfid.s S = C × c D
4 swapfid.t T = D × c C
5 swapfid.o Could not format ( ph -> ( C swapF D ) = <. O , P >. ) : No typesetting found for |- ( ph -> ( C swapF D ) = <. O , P >. ) with typecode |-
6 1 2 3 4 5 swapffunc φ O S Func T P
7 5 adantr Could not format ( ( ph /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) ) ) -> ( C swapF D ) = <. O , P >. ) : No typesetting found for |- ( ( ph /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) ) ) -> ( C swapF D ) = <. O , P >. ) with typecode |-
8 eqid Hom S = Hom S
9 eqid Hom T = Hom T
10 eqid Base S = Base S
11 simprl φ x Base S y Base S x Base S
12 simprr φ x Base S y Base S y Base S
13 7 3 4 8 9 10 11 12 swapf2f1oa φ x Base S y Base S x P y : x Hom S y 1-1 onto O x Hom T O y
14 13 ralrimivva φ x Base S y Base S x P y : x Hom S y 1-1 onto O x Hom T O y
15 10 8 9 isffth2 O S Full T S Faith T P O S Func T P x Base S y Base S x P y : x Hom S y 1-1 onto O x Hom T O y
16 6 14 15 sylanbrc φ O S Full T S Faith T P