| Step |
Hyp |
Ref |
Expression |
| 1 |
|
swapfid.c |
|- ( ph -> C e. Cat ) |
| 2 |
|
swapfid.d |
|- ( ph -> D e. Cat ) |
| 3 |
|
swapfid.s |
|- S = ( C Xc. D ) |
| 4 |
|
swapfid.t |
|- T = ( D Xc. C ) |
| 5 |
|
swapfiso.e |
|- E = ( CatCat ` U ) |
| 6 |
|
swapfiso.u |
|- ( ph -> U e. V ) |
| 7 |
|
swapfiso.s |
|- ( ph -> S e. U ) |
| 8 |
|
swapfiso.t |
|- ( ph -> T e. U ) |
| 9 |
|
swapfiso.i |
|- I = ( Iso ` E ) |
| 10 |
1 2
|
swapfelvv |
|- ( ph -> ( C swapF D ) e. ( _V X. _V ) ) |
| 11 |
|
1st2nd2 |
|- ( ( C swapF D ) e. ( _V X. _V ) -> ( C swapF D ) = <. ( 1st ` ( C swapF D ) ) , ( 2nd ` ( C swapF D ) ) >. ) |
| 12 |
10 11
|
syl |
|- ( ph -> ( C swapF D ) = <. ( 1st ` ( C swapF D ) ) , ( 2nd ` ( C swapF D ) ) >. ) |
| 13 |
1 2 3 4 12
|
swapfffth |
|- ( ph -> ( 1st ` ( C swapF D ) ) ( ( S Full T ) i^i ( S Faith T ) ) ( 2nd ` ( C swapF D ) ) ) |
| 14 |
|
df-br |
|- ( ( 1st ` ( C swapF D ) ) ( ( S Full T ) i^i ( S Faith T ) ) ( 2nd ` ( C swapF D ) ) <-> <. ( 1st ` ( C swapF D ) ) , ( 2nd ` ( C swapF D ) ) >. e. ( ( S Full T ) i^i ( S Faith T ) ) ) |
| 15 |
13 14
|
sylib |
|- ( ph -> <. ( 1st ` ( C swapF D ) ) , ( 2nd ` ( C swapF D ) ) >. e. ( ( S Full T ) i^i ( S Faith T ) ) ) |
| 16 |
12 15
|
eqeltrd |
|- ( ph -> ( C swapF D ) e. ( ( S Full T ) i^i ( S Faith T ) ) ) |
| 17 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
| 18 |
|
eqid |
|- ( Base ` T ) = ( Base ` T ) |
| 19 |
12 3 4 1 2 17 18
|
swapf1f1o |
|- ( ph -> ( 1st ` ( C swapF D ) ) : ( Base ` S ) -1-1-onto-> ( Base ` T ) ) |
| 20 |
|
eqid |
|- ( Base ` E ) = ( Base ` E ) |
| 21 |
3 1 2
|
xpccat |
|- ( ph -> S e. Cat ) |
| 22 |
7 21
|
elind |
|- ( ph -> S e. ( U i^i Cat ) ) |
| 23 |
5 20 6
|
catcbas |
|- ( ph -> ( Base ` E ) = ( U i^i Cat ) ) |
| 24 |
22 23
|
eleqtrrd |
|- ( ph -> S e. ( Base ` E ) ) |
| 25 |
4 2 1
|
xpccat |
|- ( ph -> T e. Cat ) |
| 26 |
8 25
|
elind |
|- ( ph -> T e. ( U i^i Cat ) ) |
| 27 |
26 23
|
eleqtrrd |
|- ( ph -> T e. ( Base ` E ) ) |
| 28 |
5 20 17 18 6 24 27 9
|
catciso |
|- ( ph -> ( ( C swapF D ) e. ( S I T ) <-> ( ( C swapF D ) e. ( ( S Full T ) i^i ( S Faith T ) ) /\ ( 1st ` ( C swapF D ) ) : ( Base ` S ) -1-1-onto-> ( Base ` T ) ) ) ) |
| 29 |
16 19 28
|
mpbir2and |
|- ( ph -> ( C swapF D ) e. ( S I T ) ) |