| Step |
Hyp |
Ref |
Expression |
| 1 |
|
swapfid.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 2 |
|
swapfid.d |
⊢ ( 𝜑 → 𝐷 ∈ Cat ) |
| 3 |
|
swapfid.s |
⊢ 𝑆 = ( 𝐶 ×c 𝐷 ) |
| 4 |
|
swapfid.t |
⊢ 𝑇 = ( 𝐷 ×c 𝐶 ) |
| 5 |
|
swapfiso.e |
⊢ 𝐸 = ( CatCat ‘ 𝑈 ) |
| 6 |
|
swapfiso.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) |
| 7 |
|
swapfiso.s |
⊢ ( 𝜑 → 𝑆 ∈ 𝑈 ) |
| 8 |
|
swapfiso.t |
⊢ ( 𝜑 → 𝑇 ∈ 𝑈 ) |
| 9 |
|
swapfiso.i |
⊢ 𝐼 = ( Iso ‘ 𝐸 ) |
| 10 |
1 2
|
swapfelvv |
⊢ ( 𝜑 → ( 𝐶 swapF 𝐷 ) ∈ ( V × V ) ) |
| 11 |
|
1st2nd2 |
⊢ ( ( 𝐶 swapF 𝐷 ) ∈ ( V × V ) → ( 𝐶 swapF 𝐷 ) = 〈 ( 1st ‘ ( 𝐶 swapF 𝐷 ) ) , ( 2nd ‘ ( 𝐶 swapF 𝐷 ) ) 〉 ) |
| 12 |
10 11
|
syl |
⊢ ( 𝜑 → ( 𝐶 swapF 𝐷 ) = 〈 ( 1st ‘ ( 𝐶 swapF 𝐷 ) ) , ( 2nd ‘ ( 𝐶 swapF 𝐷 ) ) 〉 ) |
| 13 |
1 2 3 4 12
|
swapfffth |
⊢ ( 𝜑 → ( 1st ‘ ( 𝐶 swapF 𝐷 ) ) ( ( 𝑆 Full 𝑇 ) ∩ ( 𝑆 Faith 𝑇 ) ) ( 2nd ‘ ( 𝐶 swapF 𝐷 ) ) ) |
| 14 |
|
df-br |
⊢ ( ( 1st ‘ ( 𝐶 swapF 𝐷 ) ) ( ( 𝑆 Full 𝑇 ) ∩ ( 𝑆 Faith 𝑇 ) ) ( 2nd ‘ ( 𝐶 swapF 𝐷 ) ) ↔ 〈 ( 1st ‘ ( 𝐶 swapF 𝐷 ) ) , ( 2nd ‘ ( 𝐶 swapF 𝐷 ) ) 〉 ∈ ( ( 𝑆 Full 𝑇 ) ∩ ( 𝑆 Faith 𝑇 ) ) ) |
| 15 |
13 14
|
sylib |
⊢ ( 𝜑 → 〈 ( 1st ‘ ( 𝐶 swapF 𝐷 ) ) , ( 2nd ‘ ( 𝐶 swapF 𝐷 ) ) 〉 ∈ ( ( 𝑆 Full 𝑇 ) ∩ ( 𝑆 Faith 𝑇 ) ) ) |
| 16 |
12 15
|
eqeltrd |
⊢ ( 𝜑 → ( 𝐶 swapF 𝐷 ) ∈ ( ( 𝑆 Full 𝑇 ) ∩ ( 𝑆 Faith 𝑇 ) ) ) |
| 17 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
| 18 |
|
eqid |
⊢ ( Base ‘ 𝑇 ) = ( Base ‘ 𝑇 ) |
| 19 |
12 3 4 1 2 17 18
|
swapf1f1o |
⊢ ( 𝜑 → ( 1st ‘ ( 𝐶 swapF 𝐷 ) ) : ( Base ‘ 𝑆 ) –1-1-onto→ ( Base ‘ 𝑇 ) ) |
| 20 |
|
eqid |
⊢ ( Base ‘ 𝐸 ) = ( Base ‘ 𝐸 ) |
| 21 |
3 1 2
|
xpccat |
⊢ ( 𝜑 → 𝑆 ∈ Cat ) |
| 22 |
7 21
|
elind |
⊢ ( 𝜑 → 𝑆 ∈ ( 𝑈 ∩ Cat ) ) |
| 23 |
5 20 6
|
catcbas |
⊢ ( 𝜑 → ( Base ‘ 𝐸 ) = ( 𝑈 ∩ Cat ) ) |
| 24 |
22 23
|
eleqtrrd |
⊢ ( 𝜑 → 𝑆 ∈ ( Base ‘ 𝐸 ) ) |
| 25 |
4 2 1
|
xpccat |
⊢ ( 𝜑 → 𝑇 ∈ Cat ) |
| 26 |
8 25
|
elind |
⊢ ( 𝜑 → 𝑇 ∈ ( 𝑈 ∩ Cat ) ) |
| 27 |
26 23
|
eleqtrrd |
⊢ ( 𝜑 → 𝑇 ∈ ( Base ‘ 𝐸 ) ) |
| 28 |
5 20 17 18 6 24 27 9
|
catciso |
⊢ ( 𝜑 → ( ( 𝐶 swapF 𝐷 ) ∈ ( 𝑆 𝐼 𝑇 ) ↔ ( ( 𝐶 swapF 𝐷 ) ∈ ( ( 𝑆 Full 𝑇 ) ∩ ( 𝑆 Faith 𝑇 ) ) ∧ ( 1st ‘ ( 𝐶 swapF 𝐷 ) ) : ( Base ‘ 𝑆 ) –1-1-onto→ ( Base ‘ 𝑇 ) ) ) ) |
| 29 |
16 19 28
|
mpbir2and |
⊢ ( 𝜑 → ( 𝐶 swapF 𝐷 ) ∈ ( 𝑆 𝐼 𝑇 ) ) |