Metamath Proof Explorer


Theorem swapciso

Description: The product category is categorically isomorphic to the swapped product category. (Contributed by Zhi Wang, 8-Oct-2025)

Ref Expression
Hypotheses swapfid.c ( 𝜑𝐶 ∈ Cat )
swapfid.d ( 𝜑𝐷 ∈ Cat )
swapfid.s 𝑆 = ( 𝐶 ×c 𝐷 )
swapfid.t 𝑇 = ( 𝐷 ×c 𝐶 )
swapfiso.e 𝐸 = ( CatCat ‘ 𝑈 )
swapfiso.u ( 𝜑𝑈𝑉 )
swapfiso.s ( 𝜑𝑆𝑈 )
swapfiso.t ( 𝜑𝑇𝑈 )
Assertion swapciso ( 𝜑𝑆 ( ≃𝑐𝐸 ) 𝑇 )

Proof

Step Hyp Ref Expression
1 swapfid.c ( 𝜑𝐶 ∈ Cat )
2 swapfid.d ( 𝜑𝐷 ∈ Cat )
3 swapfid.s 𝑆 = ( 𝐶 ×c 𝐷 )
4 swapfid.t 𝑇 = ( 𝐷 ×c 𝐶 )
5 swapfiso.e 𝐸 = ( CatCat ‘ 𝑈 )
6 swapfiso.u ( 𝜑𝑈𝑉 )
7 swapfiso.s ( 𝜑𝑆𝑈 )
8 swapfiso.t ( 𝜑𝑇𝑈 )
9 eqid ( Iso ‘ 𝐸 ) = ( Iso ‘ 𝐸 )
10 eqid ( Base ‘ 𝐸 ) = ( Base ‘ 𝐸 )
11 5 catccat ( 𝑈𝑉𝐸 ∈ Cat )
12 6 11 syl ( 𝜑𝐸 ∈ Cat )
13 3 1 2 xpccat ( 𝜑𝑆 ∈ Cat )
14 7 13 elind ( 𝜑𝑆 ∈ ( 𝑈 ∩ Cat ) )
15 5 10 6 catcbas ( 𝜑 → ( Base ‘ 𝐸 ) = ( 𝑈 ∩ Cat ) )
16 14 15 eleqtrrd ( 𝜑𝑆 ∈ ( Base ‘ 𝐸 ) )
17 4 2 1 xpccat ( 𝜑𝑇 ∈ Cat )
18 8 17 elind ( 𝜑𝑇 ∈ ( 𝑈 ∩ Cat ) )
19 18 15 eleqtrrd ( 𝜑𝑇 ∈ ( Base ‘ 𝐸 ) )
20 1 2 3 4 5 6 7 8 9 swapfiso ( 𝜑 → ( 𝐶 swapF 𝐷 ) ∈ ( 𝑆 ( Iso ‘ 𝐸 ) 𝑇 ) )
21 9 10 12 16 19 20 brcici ( 𝜑𝑆 ( ≃𝑐𝐸 ) 𝑇 )