| Step |
Hyp |
Ref |
Expression |
| 1 |
|
swapfid.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 2 |
|
swapfid.d |
⊢ ( 𝜑 → 𝐷 ∈ Cat ) |
| 3 |
|
swapfid.s |
⊢ 𝑆 = ( 𝐶 ×c 𝐷 ) |
| 4 |
|
swapfid.t |
⊢ 𝑇 = ( 𝐷 ×c 𝐶 ) |
| 5 |
|
swapfiso.e |
⊢ 𝐸 = ( CatCat ‘ 𝑈 ) |
| 6 |
|
swapfiso.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) |
| 7 |
|
swapfiso.s |
⊢ ( 𝜑 → 𝑆 ∈ 𝑈 ) |
| 8 |
|
swapfiso.t |
⊢ ( 𝜑 → 𝑇 ∈ 𝑈 ) |
| 9 |
|
eqid |
⊢ ( Iso ‘ 𝐸 ) = ( Iso ‘ 𝐸 ) |
| 10 |
|
eqid |
⊢ ( Base ‘ 𝐸 ) = ( Base ‘ 𝐸 ) |
| 11 |
5
|
catccat |
⊢ ( 𝑈 ∈ 𝑉 → 𝐸 ∈ Cat ) |
| 12 |
6 11
|
syl |
⊢ ( 𝜑 → 𝐸 ∈ Cat ) |
| 13 |
3 1 2
|
xpccat |
⊢ ( 𝜑 → 𝑆 ∈ Cat ) |
| 14 |
7 13
|
elind |
⊢ ( 𝜑 → 𝑆 ∈ ( 𝑈 ∩ Cat ) ) |
| 15 |
5 10 6
|
catcbas |
⊢ ( 𝜑 → ( Base ‘ 𝐸 ) = ( 𝑈 ∩ Cat ) ) |
| 16 |
14 15
|
eleqtrrd |
⊢ ( 𝜑 → 𝑆 ∈ ( Base ‘ 𝐸 ) ) |
| 17 |
4 2 1
|
xpccat |
⊢ ( 𝜑 → 𝑇 ∈ Cat ) |
| 18 |
8 17
|
elind |
⊢ ( 𝜑 → 𝑇 ∈ ( 𝑈 ∩ Cat ) ) |
| 19 |
18 15
|
eleqtrrd |
⊢ ( 𝜑 → 𝑇 ∈ ( Base ‘ 𝐸 ) ) |
| 20 |
1 2 3 4 5 6 7 8 9
|
swapfiso |
⊢ ( 𝜑 → ( 𝐶 swapF 𝐷 ) ∈ ( 𝑆 ( Iso ‘ 𝐸 ) 𝑇 ) ) |
| 21 |
9 10 12 16 19 20
|
brcici |
⊢ ( 𝜑 → 𝑆 ( ≃𝑐 ‘ 𝐸 ) 𝑇 ) |