Metamath Proof Explorer


Theorem swapciso

Description: The product category is categorically isomorphic to the swapped product category. (Contributed by Zhi Wang, 8-Oct-2025)

Ref Expression
Hypotheses swapfid.c φ C Cat
swapfid.d φ D Cat
swapfid.s S = C × c D
swapfid.t T = D × c C
swapfiso.e E = CatCat U
swapfiso.u φ U V
swapfiso.s φ S U
swapfiso.t φ T U
Assertion swapciso φ S 𝑐 E T

Proof

Step Hyp Ref Expression
1 swapfid.c φ C Cat
2 swapfid.d φ D Cat
3 swapfid.s S = C × c D
4 swapfid.t T = D × c C
5 swapfiso.e E = CatCat U
6 swapfiso.u φ U V
7 swapfiso.s φ S U
8 swapfiso.t φ T U
9 eqid Iso E = Iso E
10 eqid Base E = Base E
11 5 catccat U V E Cat
12 6 11 syl φ E Cat
13 3 1 2 xpccat φ S Cat
14 7 13 elind φ S U Cat
15 5 10 6 catcbas φ Base E = U Cat
16 14 15 eleqtrrd φ S Base E
17 4 2 1 xpccat φ T Cat
18 8 17 elind φ T U Cat
19 18 15 eleqtrrd φ T Base E
20 1 2 3 4 5 6 7 8 9 swapfiso Could not format ( ph -> ( C swapF D ) e. ( S ( Iso ` E ) T ) ) : No typesetting found for |- ( ph -> ( C swapF D ) e. ( S ( Iso ` E ) T ) ) with typecode |-
21 9 10 12 16 19 20 brcici φ S 𝑐 E T