Metamath Proof Explorer


Theorem swapciso

Description: The product category is categorically isomorphic to the swapped product category. (Contributed by Zhi Wang, 8-Oct-2025)

Ref Expression
Hypotheses swapfid.c
|- ( ph -> C e. Cat )
swapfid.d
|- ( ph -> D e. Cat )
swapfid.s
|- S = ( C Xc. D )
swapfid.t
|- T = ( D Xc. C )
swapfiso.e
|- E = ( CatCat ` U )
swapfiso.u
|- ( ph -> U e. V )
swapfiso.s
|- ( ph -> S e. U )
swapfiso.t
|- ( ph -> T e. U )
Assertion swapciso
|- ( ph -> S ( ~=c ` E ) T )

Proof

Step Hyp Ref Expression
1 swapfid.c
 |-  ( ph -> C e. Cat )
2 swapfid.d
 |-  ( ph -> D e. Cat )
3 swapfid.s
 |-  S = ( C Xc. D )
4 swapfid.t
 |-  T = ( D Xc. C )
5 swapfiso.e
 |-  E = ( CatCat ` U )
6 swapfiso.u
 |-  ( ph -> U e. V )
7 swapfiso.s
 |-  ( ph -> S e. U )
8 swapfiso.t
 |-  ( ph -> T e. U )
9 eqid
 |-  ( Iso ` E ) = ( Iso ` E )
10 eqid
 |-  ( Base ` E ) = ( Base ` E )
11 5 catccat
 |-  ( U e. V -> E e. Cat )
12 6 11 syl
 |-  ( ph -> E e. Cat )
13 3 1 2 xpccat
 |-  ( ph -> S e. Cat )
14 7 13 elind
 |-  ( ph -> S e. ( U i^i Cat ) )
15 5 10 6 catcbas
 |-  ( ph -> ( Base ` E ) = ( U i^i Cat ) )
16 14 15 eleqtrrd
 |-  ( ph -> S e. ( Base ` E ) )
17 4 2 1 xpccat
 |-  ( ph -> T e. Cat )
18 8 17 elind
 |-  ( ph -> T e. ( U i^i Cat ) )
19 18 15 eleqtrrd
 |-  ( ph -> T e. ( Base ` E ) )
20 1 2 3 4 5 6 7 8 9 swapfiso
 |-  ( ph -> ( C swapF D ) e. ( S ( Iso ` E ) T ) )
21 9 10 12 16 19 20 brcici
 |-  ( ph -> S ( ~=c ` E ) T )