| Step |
Hyp |
Ref |
Expression |
| 1 |
|
swapfid.c |
|- ( ph -> C e. Cat ) |
| 2 |
|
swapfid.d |
|- ( ph -> D e. Cat ) |
| 3 |
|
swapfid.s |
|- S = ( C Xc. D ) |
| 4 |
|
swapfid.t |
|- T = ( D Xc. C ) |
| 5 |
|
swapfiso.e |
|- E = ( CatCat ` U ) |
| 6 |
|
swapfiso.u |
|- ( ph -> U e. V ) |
| 7 |
|
swapfiso.s |
|- ( ph -> S e. U ) |
| 8 |
|
swapfiso.t |
|- ( ph -> T e. U ) |
| 9 |
|
eqid |
|- ( Iso ` E ) = ( Iso ` E ) |
| 10 |
|
eqid |
|- ( Base ` E ) = ( Base ` E ) |
| 11 |
5
|
catccat |
|- ( U e. V -> E e. Cat ) |
| 12 |
6 11
|
syl |
|- ( ph -> E e. Cat ) |
| 13 |
3 1 2
|
xpccat |
|- ( ph -> S e. Cat ) |
| 14 |
7 13
|
elind |
|- ( ph -> S e. ( U i^i Cat ) ) |
| 15 |
5 10 6
|
catcbas |
|- ( ph -> ( Base ` E ) = ( U i^i Cat ) ) |
| 16 |
14 15
|
eleqtrrd |
|- ( ph -> S e. ( Base ` E ) ) |
| 17 |
4 2 1
|
xpccat |
|- ( ph -> T e. Cat ) |
| 18 |
8 17
|
elind |
|- ( ph -> T e. ( U i^i Cat ) ) |
| 19 |
18 15
|
eleqtrrd |
|- ( ph -> T e. ( Base ` E ) ) |
| 20 |
1 2 3 4 5 6 7 8 9
|
swapfiso |
|- ( ph -> ( C swapF D ) e. ( S ( Iso ` E ) T ) ) |
| 21 |
9 10 12 16 19 20
|
brcici |
|- ( ph -> S ( ~=c ` E ) T ) |