Description: The bifunctor pre-composed with a swap functor is a bifunctor. (Contributed by Zhi Wang, 10-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cofuswapf1.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| cofuswapf1.d | ⊢ ( 𝜑 → 𝐷 ∈ Cat ) | ||
| cofuswapf1.f | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐷 ×c 𝐶 ) Func 𝐸 ) ) | ||
| cofuswapf1.g | ⊢ ( 𝜑 → 𝐺 = ( 𝐹 ∘func ( 𝐶 swapF 𝐷 ) ) ) | ||
| Assertion | cofuswapfcl | ⊢ ( 𝜑 → 𝐺 ∈ ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cofuswapf1.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 2 | cofuswapf1.d | ⊢ ( 𝜑 → 𝐷 ∈ Cat ) | |
| 3 | cofuswapf1.f | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐷 ×c 𝐶 ) Func 𝐸 ) ) | |
| 4 | cofuswapf1.g | ⊢ ( 𝜑 → 𝐺 = ( 𝐹 ∘func ( 𝐶 swapF 𝐷 ) ) ) | |
| 5 | eqid | ⊢ ( 𝐶 ×c 𝐷 ) = ( 𝐶 ×c 𝐷 ) | |
| 6 | eqid | ⊢ ( 𝐷 ×c 𝐶 ) = ( 𝐷 ×c 𝐶 ) | |
| 7 | 1 2 5 6 | swapffunca | ⊢ ( 𝜑 → ( 𝐶 swapF 𝐷 ) ∈ ( ( 𝐶 ×c 𝐷 ) Func ( 𝐷 ×c 𝐶 ) ) ) |
| 8 | 7 3 | cofucl | ⊢ ( 𝜑 → ( 𝐹 ∘func ( 𝐶 swapF 𝐷 ) ) ∈ ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ) |
| 9 | 4 8 | eqeltrd | ⊢ ( 𝜑 → 𝐺 ∈ ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ) |