Metamath Proof Explorer


Theorem cofuswapfcl

Description: The bifunctor pre-composed with a swap functor is a bifunctor. (Contributed by Zhi Wang, 10-Oct-2025)

Ref Expression
Hypotheses cofuswapf1.c ( 𝜑𝐶 ∈ Cat )
cofuswapf1.d ( 𝜑𝐷 ∈ Cat )
cofuswapf1.f ( 𝜑𝐹 ∈ ( ( 𝐷 ×c 𝐶 ) Func 𝐸 ) )
cofuswapf1.g ( 𝜑𝐺 = ( 𝐹func ( 𝐶 swapF 𝐷 ) ) )
Assertion cofuswapfcl ( 𝜑𝐺 ∈ ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) )

Proof

Step Hyp Ref Expression
1 cofuswapf1.c ( 𝜑𝐶 ∈ Cat )
2 cofuswapf1.d ( 𝜑𝐷 ∈ Cat )
3 cofuswapf1.f ( 𝜑𝐹 ∈ ( ( 𝐷 ×c 𝐶 ) Func 𝐸 ) )
4 cofuswapf1.g ( 𝜑𝐺 = ( 𝐹func ( 𝐶 swapF 𝐷 ) ) )
5 eqid ( 𝐶 ×c 𝐷 ) = ( 𝐶 ×c 𝐷 )
6 eqid ( 𝐷 ×c 𝐶 ) = ( 𝐷 ×c 𝐶 )
7 1 2 5 6 swapffunca ( 𝜑 → ( 𝐶 swapF 𝐷 ) ∈ ( ( 𝐶 ×c 𝐷 ) Func ( 𝐷 ×c 𝐶 ) ) )
8 7 3 cofucl ( 𝜑 → ( 𝐹func ( 𝐶 swapF 𝐷 ) ) ∈ ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) )
9 4 8 eqeltrd ( 𝜑𝐺 ∈ ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) )