| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tposcurf1.g |
|- ( ph -> G = ( <. C , D >. curryF ( F o.func ( C swapF D ) ) ) ) |
| 2 |
|
tposcurf1.a |
|- A = ( Base ` C ) |
| 3 |
|
tposcurf1.c |
|- ( ph -> C e. Cat ) |
| 4 |
|
tposcurf1.d |
|- ( ph -> D e. Cat ) |
| 5 |
|
tposcurf1.f |
|- ( ph -> F e. ( ( D Xc. C ) Func E ) ) |
| 6 |
|
tposcurf1.x |
|- ( ph -> X e. A ) |
| 7 |
|
tposcurf1.k |
|- ( ph -> K = ( ( 1st ` G ) ` X ) ) |
| 8 |
|
tposcurf1.b |
|- B = ( Base ` D ) |
| 9 |
|
tposcurf11.y |
|- ( ph -> Y e. B ) |
| 10 |
|
tposcurf12.j |
|- J = ( Hom ` D ) |
| 11 |
|
tposcurf12.1 |
|- .1. = ( Id ` C ) |
| 12 |
|
tposcurf12.y |
|- ( ph -> Z e. B ) |
| 13 |
|
tposcurf12.g |
|- ( ph -> H e. ( Y J Z ) ) |
| 14 |
1
|
fveq2d |
|- ( ph -> ( 1st ` G ) = ( 1st ` ( <. C , D >. curryF ( F o.func ( C swapF D ) ) ) ) ) |
| 15 |
14
|
fveq1d |
|- ( ph -> ( ( 1st ` G ) ` X ) = ( ( 1st ` ( <. C , D >. curryF ( F o.func ( C swapF D ) ) ) ) ` X ) ) |
| 16 |
7 15
|
eqtrd |
|- ( ph -> K = ( ( 1st ` ( <. C , D >. curryF ( F o.func ( C swapF D ) ) ) ) ` X ) ) |
| 17 |
16
|
fveq2d |
|- ( ph -> ( 2nd ` K ) = ( 2nd ` ( ( 1st ` ( <. C , D >. curryF ( F o.func ( C swapF D ) ) ) ) ` X ) ) ) |
| 18 |
17
|
oveqd |
|- ( ph -> ( Y ( 2nd ` K ) Z ) = ( Y ( 2nd ` ( ( 1st ` ( <. C , D >. curryF ( F o.func ( C swapF D ) ) ) ) ` X ) ) Z ) ) |
| 19 |
18
|
fveq1d |
|- ( ph -> ( ( Y ( 2nd ` K ) Z ) ` H ) = ( ( Y ( 2nd ` ( ( 1st ` ( <. C , D >. curryF ( F o.func ( C swapF D ) ) ) ) ` X ) ) Z ) ` H ) ) |
| 20 |
|
eqid |
|- ( <. C , D >. curryF ( F o.func ( C swapF D ) ) ) = ( <. C , D >. curryF ( F o.func ( C swapF D ) ) ) |
| 21 |
|
eqidd |
|- ( ph -> ( F o.func ( C swapF D ) ) = ( F o.func ( C swapF D ) ) ) |
| 22 |
3 4 5 21
|
cofuswapfcl |
|- ( ph -> ( F o.func ( C swapF D ) ) e. ( ( C Xc. D ) Func E ) ) |
| 23 |
|
eqid |
|- ( ( 1st ` ( <. C , D >. curryF ( F o.func ( C swapF D ) ) ) ) ` X ) = ( ( 1st ` ( <. C , D >. curryF ( F o.func ( C swapF D ) ) ) ) ` X ) |
| 24 |
20 2 3 4 22 8 6 23 9 10 11 12 13
|
curf12 |
|- ( ph -> ( ( Y ( 2nd ` ( ( 1st ` ( <. C , D >. curryF ( F o.func ( C swapF D ) ) ) ) ` X ) ) Z ) ` H ) = ( ( .1. ` X ) ( <. X , Y >. ( 2nd ` ( F o.func ( C swapF D ) ) ) <. X , Z >. ) H ) ) |
| 25 |
|
eqid |
|- ( Hom ` C ) = ( Hom ` C ) |
| 26 |
2 25 11 3 6
|
catidcl |
|- ( ph -> ( .1. ` X ) e. ( X ( Hom ` C ) X ) ) |
| 27 |
3 4 5 21 2 8 6 9 6 12 25 10 26 13
|
cofuswapf2 |
|- ( ph -> ( ( .1. ` X ) ( <. X , Y >. ( 2nd ` ( F o.func ( C swapF D ) ) ) <. X , Z >. ) H ) = ( H ( <. Y , X >. ( 2nd ` F ) <. Z , X >. ) ( .1. ` X ) ) ) |
| 28 |
19 24 27
|
3eqtrd |
|- ( ph -> ( ( Y ( 2nd ` K ) Z ) ` H ) = ( H ( <. Y , X >. ( 2nd ` F ) <. Z , X >. ) ( .1. ` X ) ) ) |