| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cofuswapf1.c |
|- ( ph -> C e. Cat ) |
| 2 |
|
cofuswapf1.d |
|- ( ph -> D e. Cat ) |
| 3 |
|
cofuswapf1.f |
|- ( ph -> F e. ( ( D Xc. C ) Func E ) ) |
| 4 |
|
cofuswapf1.g |
|- ( ph -> G = ( F o.func ( C swapF D ) ) ) |
| 5 |
|
cofuswapf1.a |
|- A = ( Base ` C ) |
| 6 |
|
cofuswapf1.b |
|- B = ( Base ` D ) |
| 7 |
|
cofuswapf1.x |
|- ( ph -> X e. A ) |
| 8 |
|
cofuswapf1.y |
|- ( ph -> Y e. B ) |
| 9 |
|
cofuswapf2.z |
|- ( ph -> Z e. A ) |
| 10 |
|
cofuswapf2.w |
|- ( ph -> W e. B ) |
| 11 |
|
cofuswapf2.h |
|- H = ( Hom ` C ) |
| 12 |
|
cofuswapf2.j |
|- J = ( Hom ` D ) |
| 13 |
|
cofuswapf2.m |
|- ( ph -> M e. ( X H Z ) ) |
| 14 |
|
cofuswapf2.n |
|- ( ph -> N e. ( Y J W ) ) |
| 15 |
4
|
fveq2d |
|- ( ph -> ( 2nd ` G ) = ( 2nd ` ( F o.func ( C swapF D ) ) ) ) |
| 16 |
15
|
oveqd |
|- ( ph -> ( <. X , Y >. ( 2nd ` G ) <. Z , W >. ) = ( <. X , Y >. ( 2nd ` ( F o.func ( C swapF D ) ) ) <. Z , W >. ) ) |
| 17 |
16
|
oveqd |
|- ( ph -> ( M ( <. X , Y >. ( 2nd ` G ) <. Z , W >. ) N ) = ( M ( <. X , Y >. ( 2nd ` ( F o.func ( C swapF D ) ) ) <. Z , W >. ) N ) ) |
| 18 |
|
df-ov |
|- ( M ( <. X , Y >. ( 2nd ` ( F o.func ( C swapF D ) ) ) <. Z , W >. ) N ) = ( ( <. X , Y >. ( 2nd ` ( F o.func ( C swapF D ) ) ) <. Z , W >. ) ` <. M , N >. ) |
| 19 |
|
eqid |
|- ( C Xc. D ) = ( C Xc. D ) |
| 20 |
19 5 6
|
xpcbas |
|- ( A X. B ) = ( Base ` ( C Xc. D ) ) |
| 21 |
|
eqid |
|- ( D Xc. C ) = ( D Xc. C ) |
| 22 |
1 2 19 21
|
swapffunca |
|- ( ph -> ( C swapF D ) e. ( ( C Xc. D ) Func ( D Xc. C ) ) ) |
| 23 |
7 8
|
opelxpd |
|- ( ph -> <. X , Y >. e. ( A X. B ) ) |
| 24 |
9 10
|
opelxpd |
|- ( ph -> <. Z , W >. e. ( A X. B ) ) |
| 25 |
|
eqid |
|- ( Hom ` ( C Xc. D ) ) = ( Hom ` ( C Xc. D ) ) |
| 26 |
13 14
|
opelxpd |
|- ( ph -> <. M , N >. e. ( ( X H Z ) X. ( Y J W ) ) ) |
| 27 |
19 5 6 11 12 7 8 9 10 25
|
xpchom2 |
|- ( ph -> ( <. X , Y >. ( Hom ` ( C Xc. D ) ) <. Z , W >. ) = ( ( X H Z ) X. ( Y J W ) ) ) |
| 28 |
26 27
|
eleqtrrd |
|- ( ph -> <. M , N >. e. ( <. X , Y >. ( Hom ` ( C Xc. D ) ) <. Z , W >. ) ) |
| 29 |
20 22 3 23 24 25 28
|
cofu2 |
|- ( ph -> ( ( <. X , Y >. ( 2nd ` ( F o.func ( C swapF D ) ) ) <. Z , W >. ) ` <. M , N >. ) = ( ( ( ( 1st ` ( C swapF D ) ) ` <. X , Y >. ) ( 2nd ` F ) ( ( 1st ` ( C swapF D ) ) ` <. Z , W >. ) ) ` ( ( <. X , Y >. ( 2nd ` ( C swapF D ) ) <. Z , W >. ) ` <. M , N >. ) ) ) |
| 30 |
18 29
|
eqtrid |
|- ( ph -> ( M ( <. X , Y >. ( 2nd ` ( F o.func ( C swapF D ) ) ) <. Z , W >. ) N ) = ( ( ( ( 1st ` ( C swapF D ) ) ` <. X , Y >. ) ( 2nd ` F ) ( ( 1st ` ( C swapF D ) ) ` <. Z , W >. ) ) ` ( ( <. X , Y >. ( 2nd ` ( C swapF D ) ) <. Z , W >. ) ` <. M , N >. ) ) ) |
| 31 |
|
df-ov |
|- ( X ( 1st ` ( C swapF D ) ) Y ) = ( ( 1st ` ( C swapF D ) ) ` <. X , Y >. ) |
| 32 |
1 2
|
swapfelvv |
|- ( ph -> ( C swapF D ) e. ( _V X. _V ) ) |
| 33 |
|
1st2nd2 |
|- ( ( C swapF D ) e. ( _V X. _V ) -> ( C swapF D ) = <. ( 1st ` ( C swapF D ) ) , ( 2nd ` ( C swapF D ) ) >. ) |
| 34 |
32 33
|
syl |
|- ( ph -> ( C swapF D ) = <. ( 1st ` ( C swapF D ) ) , ( 2nd ` ( C swapF D ) ) >. ) |
| 35 |
7 5
|
eleqtrdi |
|- ( ph -> X e. ( Base ` C ) ) |
| 36 |
8 6
|
eleqtrdi |
|- ( ph -> Y e. ( Base ` D ) ) |
| 37 |
34 35 36
|
swapf1 |
|- ( ph -> ( X ( 1st ` ( C swapF D ) ) Y ) = <. Y , X >. ) |
| 38 |
31 37
|
eqtr3id |
|- ( ph -> ( ( 1st ` ( C swapF D ) ) ` <. X , Y >. ) = <. Y , X >. ) |
| 39 |
|
df-ov |
|- ( Z ( 1st ` ( C swapF D ) ) W ) = ( ( 1st ` ( C swapF D ) ) ` <. Z , W >. ) |
| 40 |
9 5
|
eleqtrdi |
|- ( ph -> Z e. ( Base ` C ) ) |
| 41 |
10 6
|
eleqtrdi |
|- ( ph -> W e. ( Base ` D ) ) |
| 42 |
34 40 41
|
swapf1 |
|- ( ph -> ( Z ( 1st ` ( C swapF D ) ) W ) = <. W , Z >. ) |
| 43 |
39 42
|
eqtr3id |
|- ( ph -> ( ( 1st ` ( C swapF D ) ) ` <. Z , W >. ) = <. W , Z >. ) |
| 44 |
38 43
|
oveq12d |
|- ( ph -> ( ( ( 1st ` ( C swapF D ) ) ` <. X , Y >. ) ( 2nd ` F ) ( ( 1st ` ( C swapF D ) ) ` <. Z , W >. ) ) = ( <. Y , X >. ( 2nd ` F ) <. W , Z >. ) ) |
| 45 |
|
df-ov |
|- ( M ( <. X , Y >. ( 2nd ` ( C swapF D ) ) <. Z , W >. ) N ) = ( ( <. X , Y >. ( 2nd ` ( C swapF D ) ) <. Z , W >. ) ` <. M , N >. ) |
| 46 |
11
|
oveqi |
|- ( X H Z ) = ( X ( Hom ` C ) Z ) |
| 47 |
13 46
|
eleqtrdi |
|- ( ph -> M e. ( X ( Hom ` C ) Z ) ) |
| 48 |
12
|
oveqi |
|- ( Y J W ) = ( Y ( Hom ` D ) W ) |
| 49 |
14 48
|
eleqtrdi |
|- ( ph -> N e. ( Y ( Hom ` D ) W ) ) |
| 50 |
34 35 36 40 41 47 49
|
swapf2 |
|- ( ph -> ( M ( <. X , Y >. ( 2nd ` ( C swapF D ) ) <. Z , W >. ) N ) = <. N , M >. ) |
| 51 |
45 50
|
eqtr3id |
|- ( ph -> ( ( <. X , Y >. ( 2nd ` ( C swapF D ) ) <. Z , W >. ) ` <. M , N >. ) = <. N , M >. ) |
| 52 |
44 51
|
fveq12d |
|- ( ph -> ( ( ( ( 1st ` ( C swapF D ) ) ` <. X , Y >. ) ( 2nd ` F ) ( ( 1st ` ( C swapF D ) ) ` <. Z , W >. ) ) ` ( ( <. X , Y >. ( 2nd ` ( C swapF D ) ) <. Z , W >. ) ` <. M , N >. ) ) = ( ( <. Y , X >. ( 2nd ` F ) <. W , Z >. ) ` <. N , M >. ) ) |
| 53 |
17 30 52
|
3eqtrd |
|- ( ph -> ( M ( <. X , Y >. ( 2nd ` G ) <. Z , W >. ) N ) = ( ( <. Y , X >. ( 2nd ` F ) <. W , Z >. ) ` <. N , M >. ) ) |
| 54 |
|
df-ov |
|- ( N ( <. Y , X >. ( 2nd ` F ) <. W , Z >. ) M ) = ( ( <. Y , X >. ( 2nd ` F ) <. W , Z >. ) ` <. N , M >. ) |
| 55 |
53 54
|
eqtr4di |
|- ( ph -> ( M ( <. X , Y >. ( 2nd ` G ) <. Z , W >. ) N ) = ( N ( <. Y , X >. ( 2nd ` F ) <. W , Z >. ) M ) ) |