| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cofuswapf1.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 2 |
|
cofuswapf1.d |
⊢ ( 𝜑 → 𝐷 ∈ Cat ) |
| 3 |
|
cofuswapf1.f |
⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐷 ×c 𝐶 ) Func 𝐸 ) ) |
| 4 |
|
cofuswapf1.g |
⊢ ( 𝜑 → 𝐺 = ( 𝐹 ∘func ( 𝐶 swapF 𝐷 ) ) ) |
| 5 |
|
cofuswapf1.a |
⊢ 𝐴 = ( Base ‘ 𝐶 ) |
| 6 |
|
cofuswapf1.b |
⊢ 𝐵 = ( Base ‘ 𝐷 ) |
| 7 |
|
cofuswapf1.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) |
| 8 |
|
cofuswapf1.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
| 9 |
|
cofuswapf2.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝐴 ) |
| 10 |
|
cofuswapf2.w |
⊢ ( 𝜑 → 𝑊 ∈ 𝐵 ) |
| 11 |
|
cofuswapf2.h |
⊢ 𝐻 = ( Hom ‘ 𝐶 ) |
| 12 |
|
cofuswapf2.j |
⊢ 𝐽 = ( Hom ‘ 𝐷 ) |
| 13 |
|
cofuswapf2.m |
⊢ ( 𝜑 → 𝑀 ∈ ( 𝑋 𝐻 𝑍 ) ) |
| 14 |
|
cofuswapf2.n |
⊢ ( 𝜑 → 𝑁 ∈ ( 𝑌 𝐽 𝑊 ) ) |
| 15 |
4
|
fveq2d |
⊢ ( 𝜑 → ( 2nd ‘ 𝐺 ) = ( 2nd ‘ ( 𝐹 ∘func ( 𝐶 swapF 𝐷 ) ) ) ) |
| 16 |
15
|
oveqd |
⊢ ( 𝜑 → ( 〈 𝑋 , 𝑌 〉 ( 2nd ‘ 𝐺 ) 〈 𝑍 , 𝑊 〉 ) = ( 〈 𝑋 , 𝑌 〉 ( 2nd ‘ ( 𝐹 ∘func ( 𝐶 swapF 𝐷 ) ) ) 〈 𝑍 , 𝑊 〉 ) ) |
| 17 |
16
|
oveqd |
⊢ ( 𝜑 → ( 𝑀 ( 〈 𝑋 , 𝑌 〉 ( 2nd ‘ 𝐺 ) 〈 𝑍 , 𝑊 〉 ) 𝑁 ) = ( 𝑀 ( 〈 𝑋 , 𝑌 〉 ( 2nd ‘ ( 𝐹 ∘func ( 𝐶 swapF 𝐷 ) ) ) 〈 𝑍 , 𝑊 〉 ) 𝑁 ) ) |
| 18 |
|
df-ov |
⊢ ( 𝑀 ( 〈 𝑋 , 𝑌 〉 ( 2nd ‘ ( 𝐹 ∘func ( 𝐶 swapF 𝐷 ) ) ) 〈 𝑍 , 𝑊 〉 ) 𝑁 ) = ( ( 〈 𝑋 , 𝑌 〉 ( 2nd ‘ ( 𝐹 ∘func ( 𝐶 swapF 𝐷 ) ) ) 〈 𝑍 , 𝑊 〉 ) ‘ 〈 𝑀 , 𝑁 〉 ) |
| 19 |
|
eqid |
⊢ ( 𝐶 ×c 𝐷 ) = ( 𝐶 ×c 𝐷 ) |
| 20 |
19 5 6
|
xpcbas |
⊢ ( 𝐴 × 𝐵 ) = ( Base ‘ ( 𝐶 ×c 𝐷 ) ) |
| 21 |
|
eqid |
⊢ ( 𝐷 ×c 𝐶 ) = ( 𝐷 ×c 𝐶 ) |
| 22 |
1 2 19 21
|
swapffunca |
⊢ ( 𝜑 → ( 𝐶 swapF 𝐷 ) ∈ ( ( 𝐶 ×c 𝐷 ) Func ( 𝐷 ×c 𝐶 ) ) ) |
| 23 |
7 8
|
opelxpd |
⊢ ( 𝜑 → 〈 𝑋 , 𝑌 〉 ∈ ( 𝐴 × 𝐵 ) ) |
| 24 |
9 10
|
opelxpd |
⊢ ( 𝜑 → 〈 𝑍 , 𝑊 〉 ∈ ( 𝐴 × 𝐵 ) ) |
| 25 |
|
eqid |
⊢ ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) = ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) |
| 26 |
13 14
|
opelxpd |
⊢ ( 𝜑 → 〈 𝑀 , 𝑁 〉 ∈ ( ( 𝑋 𝐻 𝑍 ) × ( 𝑌 𝐽 𝑊 ) ) ) |
| 27 |
19 5 6 11 12 7 8 9 10 25
|
xpchom2 |
⊢ ( 𝜑 → ( 〈 𝑋 , 𝑌 〉 ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑍 , 𝑊 〉 ) = ( ( 𝑋 𝐻 𝑍 ) × ( 𝑌 𝐽 𝑊 ) ) ) |
| 28 |
26 27
|
eleqtrrd |
⊢ ( 𝜑 → 〈 𝑀 , 𝑁 〉 ∈ ( 〈 𝑋 , 𝑌 〉 ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑍 , 𝑊 〉 ) ) |
| 29 |
20 22 3 23 24 25 28
|
cofu2 |
⊢ ( 𝜑 → ( ( 〈 𝑋 , 𝑌 〉 ( 2nd ‘ ( 𝐹 ∘func ( 𝐶 swapF 𝐷 ) ) ) 〈 𝑍 , 𝑊 〉 ) ‘ 〈 𝑀 , 𝑁 〉 ) = ( ( ( ( 1st ‘ ( 𝐶 swapF 𝐷 ) ) ‘ 〈 𝑋 , 𝑌 〉 ) ( 2nd ‘ 𝐹 ) ( ( 1st ‘ ( 𝐶 swapF 𝐷 ) ) ‘ 〈 𝑍 , 𝑊 〉 ) ) ‘ ( ( 〈 𝑋 , 𝑌 〉 ( 2nd ‘ ( 𝐶 swapF 𝐷 ) ) 〈 𝑍 , 𝑊 〉 ) ‘ 〈 𝑀 , 𝑁 〉 ) ) ) |
| 30 |
18 29
|
eqtrid |
⊢ ( 𝜑 → ( 𝑀 ( 〈 𝑋 , 𝑌 〉 ( 2nd ‘ ( 𝐹 ∘func ( 𝐶 swapF 𝐷 ) ) ) 〈 𝑍 , 𝑊 〉 ) 𝑁 ) = ( ( ( ( 1st ‘ ( 𝐶 swapF 𝐷 ) ) ‘ 〈 𝑋 , 𝑌 〉 ) ( 2nd ‘ 𝐹 ) ( ( 1st ‘ ( 𝐶 swapF 𝐷 ) ) ‘ 〈 𝑍 , 𝑊 〉 ) ) ‘ ( ( 〈 𝑋 , 𝑌 〉 ( 2nd ‘ ( 𝐶 swapF 𝐷 ) ) 〈 𝑍 , 𝑊 〉 ) ‘ 〈 𝑀 , 𝑁 〉 ) ) ) |
| 31 |
|
df-ov |
⊢ ( 𝑋 ( 1st ‘ ( 𝐶 swapF 𝐷 ) ) 𝑌 ) = ( ( 1st ‘ ( 𝐶 swapF 𝐷 ) ) ‘ 〈 𝑋 , 𝑌 〉 ) |
| 32 |
1 2
|
swapfelvv |
⊢ ( 𝜑 → ( 𝐶 swapF 𝐷 ) ∈ ( V × V ) ) |
| 33 |
|
1st2nd2 |
⊢ ( ( 𝐶 swapF 𝐷 ) ∈ ( V × V ) → ( 𝐶 swapF 𝐷 ) = 〈 ( 1st ‘ ( 𝐶 swapF 𝐷 ) ) , ( 2nd ‘ ( 𝐶 swapF 𝐷 ) ) 〉 ) |
| 34 |
32 33
|
syl |
⊢ ( 𝜑 → ( 𝐶 swapF 𝐷 ) = 〈 ( 1st ‘ ( 𝐶 swapF 𝐷 ) ) , ( 2nd ‘ ( 𝐶 swapF 𝐷 ) ) 〉 ) |
| 35 |
7 5
|
eleqtrdi |
⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝐶 ) ) |
| 36 |
8 6
|
eleqtrdi |
⊢ ( 𝜑 → 𝑌 ∈ ( Base ‘ 𝐷 ) ) |
| 37 |
34 35 36
|
swapf1 |
⊢ ( 𝜑 → ( 𝑋 ( 1st ‘ ( 𝐶 swapF 𝐷 ) ) 𝑌 ) = 〈 𝑌 , 𝑋 〉 ) |
| 38 |
31 37
|
eqtr3id |
⊢ ( 𝜑 → ( ( 1st ‘ ( 𝐶 swapF 𝐷 ) ) ‘ 〈 𝑋 , 𝑌 〉 ) = 〈 𝑌 , 𝑋 〉 ) |
| 39 |
|
df-ov |
⊢ ( 𝑍 ( 1st ‘ ( 𝐶 swapF 𝐷 ) ) 𝑊 ) = ( ( 1st ‘ ( 𝐶 swapF 𝐷 ) ) ‘ 〈 𝑍 , 𝑊 〉 ) |
| 40 |
9 5
|
eleqtrdi |
⊢ ( 𝜑 → 𝑍 ∈ ( Base ‘ 𝐶 ) ) |
| 41 |
10 6
|
eleqtrdi |
⊢ ( 𝜑 → 𝑊 ∈ ( Base ‘ 𝐷 ) ) |
| 42 |
34 40 41
|
swapf1 |
⊢ ( 𝜑 → ( 𝑍 ( 1st ‘ ( 𝐶 swapF 𝐷 ) ) 𝑊 ) = 〈 𝑊 , 𝑍 〉 ) |
| 43 |
39 42
|
eqtr3id |
⊢ ( 𝜑 → ( ( 1st ‘ ( 𝐶 swapF 𝐷 ) ) ‘ 〈 𝑍 , 𝑊 〉 ) = 〈 𝑊 , 𝑍 〉 ) |
| 44 |
38 43
|
oveq12d |
⊢ ( 𝜑 → ( ( ( 1st ‘ ( 𝐶 swapF 𝐷 ) ) ‘ 〈 𝑋 , 𝑌 〉 ) ( 2nd ‘ 𝐹 ) ( ( 1st ‘ ( 𝐶 swapF 𝐷 ) ) ‘ 〈 𝑍 , 𝑊 〉 ) ) = ( 〈 𝑌 , 𝑋 〉 ( 2nd ‘ 𝐹 ) 〈 𝑊 , 𝑍 〉 ) ) |
| 45 |
|
df-ov |
⊢ ( 𝑀 ( 〈 𝑋 , 𝑌 〉 ( 2nd ‘ ( 𝐶 swapF 𝐷 ) ) 〈 𝑍 , 𝑊 〉 ) 𝑁 ) = ( ( 〈 𝑋 , 𝑌 〉 ( 2nd ‘ ( 𝐶 swapF 𝐷 ) ) 〈 𝑍 , 𝑊 〉 ) ‘ 〈 𝑀 , 𝑁 〉 ) |
| 46 |
11
|
oveqi |
⊢ ( 𝑋 𝐻 𝑍 ) = ( 𝑋 ( Hom ‘ 𝐶 ) 𝑍 ) |
| 47 |
13 46
|
eleqtrdi |
⊢ ( 𝜑 → 𝑀 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑍 ) ) |
| 48 |
12
|
oveqi |
⊢ ( 𝑌 𝐽 𝑊 ) = ( 𝑌 ( Hom ‘ 𝐷 ) 𝑊 ) |
| 49 |
14 48
|
eleqtrdi |
⊢ ( 𝜑 → 𝑁 ∈ ( 𝑌 ( Hom ‘ 𝐷 ) 𝑊 ) ) |
| 50 |
34 35 36 40 41 47 49
|
swapf2 |
⊢ ( 𝜑 → ( 𝑀 ( 〈 𝑋 , 𝑌 〉 ( 2nd ‘ ( 𝐶 swapF 𝐷 ) ) 〈 𝑍 , 𝑊 〉 ) 𝑁 ) = 〈 𝑁 , 𝑀 〉 ) |
| 51 |
45 50
|
eqtr3id |
⊢ ( 𝜑 → ( ( 〈 𝑋 , 𝑌 〉 ( 2nd ‘ ( 𝐶 swapF 𝐷 ) ) 〈 𝑍 , 𝑊 〉 ) ‘ 〈 𝑀 , 𝑁 〉 ) = 〈 𝑁 , 𝑀 〉 ) |
| 52 |
44 51
|
fveq12d |
⊢ ( 𝜑 → ( ( ( ( 1st ‘ ( 𝐶 swapF 𝐷 ) ) ‘ 〈 𝑋 , 𝑌 〉 ) ( 2nd ‘ 𝐹 ) ( ( 1st ‘ ( 𝐶 swapF 𝐷 ) ) ‘ 〈 𝑍 , 𝑊 〉 ) ) ‘ ( ( 〈 𝑋 , 𝑌 〉 ( 2nd ‘ ( 𝐶 swapF 𝐷 ) ) 〈 𝑍 , 𝑊 〉 ) ‘ 〈 𝑀 , 𝑁 〉 ) ) = ( ( 〈 𝑌 , 𝑋 〉 ( 2nd ‘ 𝐹 ) 〈 𝑊 , 𝑍 〉 ) ‘ 〈 𝑁 , 𝑀 〉 ) ) |
| 53 |
17 30 52
|
3eqtrd |
⊢ ( 𝜑 → ( 𝑀 ( 〈 𝑋 , 𝑌 〉 ( 2nd ‘ 𝐺 ) 〈 𝑍 , 𝑊 〉 ) 𝑁 ) = ( ( 〈 𝑌 , 𝑋 〉 ( 2nd ‘ 𝐹 ) 〈 𝑊 , 𝑍 〉 ) ‘ 〈 𝑁 , 𝑀 〉 ) ) |
| 54 |
|
df-ov |
⊢ ( 𝑁 ( 〈 𝑌 , 𝑋 〉 ( 2nd ‘ 𝐹 ) 〈 𝑊 , 𝑍 〉 ) 𝑀 ) = ( ( 〈 𝑌 , 𝑋 〉 ( 2nd ‘ 𝐹 ) 〈 𝑊 , 𝑍 〉 ) ‘ 〈 𝑁 , 𝑀 〉 ) |
| 55 |
53 54
|
eqtr4di |
⊢ ( 𝜑 → ( 𝑀 ( 〈 𝑋 , 𝑌 〉 ( 2nd ‘ 𝐺 ) 〈 𝑍 , 𝑊 〉 ) 𝑁 ) = ( 𝑁 ( 〈 𝑌 , 𝑋 〉 ( 2nd ‘ 𝐹 ) 〈 𝑊 , 𝑍 〉 ) 𝑀 ) ) |